{ "cells": [ { "cell_type": "markdown", "id": "24a21909-a3ad-46b4-a78f-3ea9b493962f", "metadata": {}, "source": [ "# EK381 Video Playlist\n", "\n", "Use this notebook to select and play the EK381 videos.\n", "\n", "Run all cells, then use the select to select the video you want." ] }, { "cell_type": "code", "execution_count": 1, "id": "d1e34b6d-c5db-44a6-902d-a839621c7923", "metadata": {}, "outputs": [], "source": [ "import IPython.display as disp\n", "import ipywidgets as widgets" ] }, { "cell_type": "code", "execution_count": 2, "id": "8ffce1e5-5570-4adb-9aef-6eec8db68bac", "metadata": { "jupyter": { "source_hidden": true } }, "outputs": [], "source": [ "video_info={'id': {0: 'IOOYbtuoXOY',\n", " 1: 'paHSf35tBoA',\n", " 2: 'HfsIf-RDMAE',\n", " 3: 'tCwy7jfvkzw',\n", " 4: 'x_Kne2Oj3Us',\n", " 5: 'PhaI5x2GTCQ',\n", " 6: '0S3nZjZuAxo',\n", " 7: 'zQOt2UzrK2k',\n", " 8: 'aXJvLKrCA5w',\n", " 9: 'J4H_IhqS6ck',\n", " 10: 'mbC7N-DFglM',\n", " 11: 'fzFXRARNk4U',\n", " 12: 'T8LOEKmUqOA',\n", " 13: 'rfKhYTMoxBI',\n", " 14: 'BG9jOwKDrxM',\n", " 15: 'fwSEuzgJfl4',\n", " 16: 'sDGUHdrryT0',\n", " 17: '-jYcHkgSPK0',\n", " 18: 'TNpjC_H9aDE',\n", " 19: 'i81WuxrU_b0',\n", " 20: 'GZ0v2ahlzPE',\n", " 21: 'Mc4eVJnNN34',\n", " 22: '86m-cizvK14',\n", " 23: 'GfNGkvMyFLQ',\n", " 24: 'YsU_iDGrTKI',\n", " 25: 'twomug5upzM',\n", " 26: 'xADJo0wH7-A',\n", " 27: 'yQdWLJSWa2o',\n", " 28: '4SxMT7uxa3Q',\n", " 29: 'P1dKyLee9e0',\n", " 30: '6t_2WRGE91o',\n", " 31: 'zdxy1gt9LlA',\n", " 32: 'KLgyrEqc2ho',\n", " 33: 'HfaKrIKf5SM',\n", " 34: 'h_Mhtsa_IJo',\n", " 35: 'FVkwTzyaCO8',\n", " 36: 'EKnDV-iBiUY',\n", " 37: '6QJc8RaFwnA',\n", " 38: 'RuFBYGo84Hs',\n", " 39: 'HTRERPW0Tx8',\n", " 40: 'o1tzq-rJtDk',\n", " 41: 'Kvc-c2g9dKs',\n", " 42: 'Jja88G4X2XQ',\n", " 43: 'gRUufpAMmHM',\n", " 44: 'YsEiMTvwuJs',\n", " 45: 'lhdWusphZRg',\n", " 46: 'nTs4SV5_I8k',\n", " 47: 'yYiIMXa4m2E',\n", " 48: 'p_sNQqCIV90'},\n", " 'title': {0: 'Probability 1.1 Set Theory (2022)',\n", " 1: 'Probability 1.2 Probability Axioms (2022)',\n", " 2: 'Probability 1.3 Conditional Probability Concepts (2022)',\n", " 3: 'Probability 1.4 Conditional Probability Examples (2022)',\n", " 4: 'Probability 1.5 Independence (2022)',\n", " 5: 'Probability 1.6 Counting (2022)',\n", " 6: 'Probability 2.1 Discrete Random Variables (2022)',\n", " 7: 'Probability 2.2 Discrete Random Variables: Cumulative Distribution Function (2022)',\n", " 8: 'Probability 2.3 Expectation for Discrete Random Variables (2022)',\n", " 9: 'Probability 2.4 Variance for Discrete Random Variables (2022)',\n", " 10: 'Probability 2.5 Important Families of Discrete Random Variables (2022)',\n", " 11: 'Probability 2.6 Conditioning for Discrete Random Variables (2022)',\n", " 12: 'Probability 3.1 Continuous Random Variables (2022)',\n", " 13: 'Probability 3.2 Expectation and Variance for Continuous Random Variables (2022)',\n", " 14: 'Probability 3.3 Important Families of Continuous Random Variables (2022)',\n", " 15: 'Probability 3.4 Conditioning for Continuous Random Variables (2022)',\n", " 16: 'Probability 4.1 Pairs of Discrete Random Variables (2022)',\n", " 17: 'Probability 4.2 Conditional PMF (2022)',\n", " 18: 'Probability 4.3 Pairs of Continuous Random Variables (2022)',\n", " 19: 'Probability 4.4 Conditional PDF (2022)',\n", " 20: 'Probability 4.5 Independence of Random Variables (2022)',\n", " 21: 'Probability 4.6 Expected Value of a Function of Random Variables (2022)',\n", " 22: 'Probability 4.7 Conditional Expectation (2022)',\n", " 23: 'Probability 5.1 Covariance (2022)',\n", " 24: 'Probability 5.2 Correlation Coefficient (2022)',\n", " 25: 'Probability 5.3 Jointly Gaussian Random Variables - Concepts (2022)',\n", " 26: 'Probability 5.4 Jointly Gaussian Random Variables - Examples (2022)',\n", " 27: 'Probability 5.5 Random Vectors (2022)',\n", " 28: 'Probability 5.6 Gaussian Vectors (2022)',\n", " 29: 'Probability 6.1 Binary Hypothesis Testing - Concepts (2022)',\n", " 30: 'Probability 6.2 Binary Hypothesis Testing - Examples (2022)',\n", " 31: 'Probability 6.3 Likelihood Ratio (2022)',\n", " 32: 'Probability 6.4 Detection with Vector Observations (2022)',\n", " 33: 'Probability 7.1 MMSE Estimation (2022)',\n", " 34: 'Probability 7.2 Linear Estimation (2022)',\n", " 35: 'Probability 7.3 Vector Estimation (2022)',\n", " 36: 'Probability 8.1 Sums of Random Variables (2022)',\n", " 37: 'Probability 8.2 Limits of Random Variables (2022)',\n", " 38: 'Probability 9.1 Confidence Intervals - Concepts (2022)',\n", " 39: 'Probability 9.2 Confidence Intervals - Examples (2022)',\n", " 40: 'Probability 9.3 Significance Testing - Concepts (2022)',\n", " 41: 'Probability 9.4 Significance Testing - Examples (2022)',\n", " 42: 'Probability 10.1 Machine Learning Overview (2022)',\n", " 43: 'Probability 10.2 Binary Classification (2022)',\n", " 44: 'Probability 10.3 Dimensionality Reduction (2022)',\n", " 45: 'Probability 11.1 Markov Chains (2022)',\n", " 46: 'Probability 11.2 State Vector and Transition Matrix (2022)',\n", " 47: 'Probability 11.3 State Classification (2022)',\n", " 48: 'Probability 11.4 Unique Limiting State Vector (2022)'}}\n" ] }, { "cell_type": "code", "execution_count": null, "id": "581705ad-37ea-4ba0-b62d-7febcd6fe0e8", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 3, "id": "066c3990-11d4-472f-acca-3608f8bcaa4f", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d422b9097b0a4959af57c72da988c4ca", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Dropdown(layout=Layout(height='40px', width='80%'), options=(('Probability 1.1 Set Theory (2022)', 0), ('Proba…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ce277c20e61f4c0cad5147ba66f827f4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "output=widgets.Output()\n", "out_vid=widgets.Output()\n", "def on_value_change(change):\n", " with output:\n", " vidid = video_info['id'][change['new']]\n", " prob_video = disp.YouTubeVideo(vidid, width=800, height=600,allowautoplay=True)\n", " display(prob_video,out_vid,clear=True)\n", "\n", "infolist=list(zip(video_info['title'].values(),range(49)))\n", "playlist = widgets.Dropdown(options=infolist,\n", " layout=widgets.Layout(width='80%', height='40px'))\n", "playlist.observe(on_value_change, names='value')\n", "display(playlist,output)" ] }, { "cell_type": "code", "execution_count": null, "id": "18a81d01-e816-4d79-98e2-e5fdb739d3c3", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.1" } }, "nbformat": 4, "nbformat_minor": 5 }