
EK381 Probability, Statistics, and Data Science for Engineers Boston University
Prof Carruthers Summer 2025

Homework 8: finish by 6/17

Reading: Notes: Chapter 6 Videos: 6.1 - 6.4

Problem 8.1 (Video 6.1, 6.2, Lecture Problem)

Consider the following binary hypothesis testing scenario. (Note that all required integrals can
be solved by calculating the areas of rectangles and triangles, so we are expecting exact answers.)
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The hypothesis probabilities are P[H0] = 2/3 and P[H1] = 1/3.

(a) Determine the ML rule.

Solution:

Looking at the diagram, we can see that fY |H0
(y) > fY |H1

(y) whenever 1/4 < |y| < 3/4.
Therefore, the ML rule is

DML(y) =

{
1 fY |H1

(y) ≥ fY |H0
(y)

0 fY |H1
(y) < fY |H0

(y)

=

{
1 3/4 ≤ y ≤ 1 or − 1/4 ≤ y ≤ 1/4 or − 1 ≤ y ≤ −3/4

0 −3/4 < y < −1/4 or 1/4 < y < 3/4

(b) Determine the MAP rule.

Solution:

The threshold for the likelihood ratio is P[H0]
P[H1]

= 2. We can see that the likelihood ratio

is less than 2 if 1/8 < |y| < 7/8. Therefore, the MAP rule is

DMAP(y) =

{
1 fY |H1

(y)P[H1] ≥ fY |H0
(y)P[H0]

0 fY |H1
(y)P[H1] < fY |H0

(y)P[H0]
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=

{
1 7/8 ≤ y ≤ 1 or − 1/8 ≤ y ≤ 1/8 or − 1 ≤ y ≤ −7/8

0 −7/8 < y < −1/8 or 1/8 < y < 7/8

(c) Determine the probability of error under the ML rule.

Solution:

The probability of false alarm is the area of four triangles, with base 1/4 and height
1/2. The probability of missed detection is the area of two rectangles, each of which
has base 1/2, height 1/2.

PFA = P[DML(Y ) = 1|H0] = 4 · (1/16) = 1

4

PMD = P[DML(Y ) = 0|H1] =
1

2

P[errorML] = PFAP[H0] + PMDP[H1] =
1

4
· 2
3
+

1

2
· 1
3
=

1

6
+

1

6
=

1

3
.

(d) Determine the probability of error under the MAP rule.

Solution:

The probability of false alarm is the area of four triangles, with base 1/8 and height
1/4. The probability of missed detection is the area of two rectangles, each of which
has base 3/4, height 1/2.

PFA = P[DMAP(Y ) = 1|H0] =
1

16

PMD = P[DMAP(Y ) = 0|H1] =
3

4

P[errorMAP] = PFAP[H0] + PMDP[H1] =
1

16
· 2
3
+

3

4
· 1
3
=

7

24

Problem 8.2 (Video 6.1, 6.2, 6.3, Quick Calculations) For each of the scenarios below,
determine the requested quantities.

(a) Under H0, Y is Gaussian(−1, 1). Under H1, Y is Gaussian(+1, 1). Let P[H0] = 1/3 and
P[H1] = 2/3. Determine the ML and MAP decision rules.

Solution:

From Video 6.2, we know that the ML rule for this scenario is

DML(y) =

{
1 y ≥ 0

0 y < 0

and that the MAP rule is

DMAP(y) =

{
1 y ≥ β

0 y < β
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where β =
1

2
ln

(
1/3

2/3

)
= −1

2
ln(2).

(b) Under H0, Y is Exponential(1). Under H1, Y is Exponential(2). Let P[H0] = 1/2 and
P[H1] = 1/2. Determine the likelihood ratio, the ML rule, and the probability of error
under the ML rule.

Solution:

We start by writing the likelihoods

fY |H0
=

{
e−y y ≥ 0

0 y < 0

{
2e−2y y ≥ 0

0 y < 0

and the likelihood ratio as well as the log-likelihood ratio

L(y) =
fY |H1

(y)

fY |H0
(y)

= 2e−y ln(L(y)) = −y + ln(2)

It follows that

DML(y) =

{
1 ln(L(y)) ≥ 0

0 ln(L(y)) < 0
=

{
1 −y + ln(2) ≥ 0

0 −y + ln(2) < 0
=

{
1 y ≤ ln(2)

0 y > ln(2)

The probabilities of false alarm and missed detection are

PFA = P[Y ≤ ln(2)|H0] = FY |H0
(ln(2)) = 1− e− ln(2) = 1− 1

2
=

1

2

PMD = P[Y > ln(2)|H1] = 1− FY |H1
(ln(2)) = e−2 ln(2) =

1

4

It follows that the probability of error is Perror =
1

2
· 1
2
+

1

4
· 1
2
=

3

8
.

(c) Under H0, Y is Binomial(4, 1/2). Under H1, Y is Binomial(3, 1/2). Let P[H0] = 2/3 and
P[H1] = 1/3. Determine the probability of error under the ML and MAP decision rules.

Solution:

The maximum likelihood (ML) decision rule assigns each outcome x to the hypothesis,
H0 or H1, with the higher likelihood, PY |H0

(y) or PY |H1
(y). We first write out the

likelihood table, using the conditional PMFs

PY |H0
(y) =

{(
n
y

)
(12)

4 y = 0, 1, 2, 3, 4

0 otherwise
PY |H1

(y) =

{(
n
y

)
(12)

3 y = 0, 1, 2, 3

0 otherwise

and then pick the largest element in each column (shown in blue below):

3



x
0 1 2 3 4

PY |H0
(y) 1/16 4/16 6/16 4/16 1/16

PY |H1
(y) 2/16 6/16 6/16 2/16 0

The green-colored elements indicate a tie. Where there is a tie, the ML rule is ambigu-
ous. In this case, the lower probability of error is obtained if we decide the apriori more
probable hypothesis, which is H0. If the hypotheses are equally likely (not the case in
this problem), then deciding H0 or H1 would give you the same error probability.

Therefore, the ML rule is DML(y) =

{
1 y = 0, 1

0 y = 2, 3, 4
, i.e. we have decision regions

AML
1 = {0, 1} and AML

0 = {2, 3, 4}. We can now work out the probabilities of false
alarm, missed detection, and error

PML
FA =

∑
y∈AML

1

PY |H0
(y) = PY |H0

(0) + PY |H0
(1) =

1

16
+

4

16
=

5

16

PML
MD =

∑
y∈AML

0

PY |H1
(y) = PY |H1

(2) + PY |H1
(3) + PY |H1

(4) =
6

16
+

2

16
+ 0 =

8

16

PML
error = PML

FA P[H0] + PML
MD P[H1] =

5

16
· 2
3
+

8

16
· 1
3
=

3

8

For completeness, we will work out everything if we had decided H1 when x = 2 (the
likelihood ratio is 1):

In this case, the ML rule is given by DML(y) =

{
1 y = 0, 1, 2

0 y = 3, 4
, i.e. we have decision

regions AML
1 = {0, 1, 2} and AML

0 = {3, 4}. We can now work out the probabilities of
false alarm, missed detection, and error

PML
FA =

∑
y∈AML

1

PY |H0
(y) = PY |H0

(0) + PY |H0
(1) + PY |H0

(2) =
1

16
+

4

16
+

6

16
=

11

16

PML
MD =

∑
y∈AML

0

PY |H1
(y) = PY |H1

(3) + PY |H1
(4) =

2

16
+ 0 =

2

16

PML
error = PML

FA P[H0] + PML
MD P[H1] =

11

16
· 2
3
+

2

16
· 1
3
=

4

8

which is higher than 3/8 that we got previously when we decided H0 for x = 2.

To determine the MAP rule, we should first scale the rows of the table by the corre-
sponding hypothesis probabilities and then choose the largest element in each column
(shown in blue below):
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x
0 1 2 3 4

PY |H0
(y)P[H0] 1/24 1/6 1/4 1/6 1/24

PY |H1
(y)P[H1] 1/24 1/8 1/8 1/24 0

Once again, we notice that the hypotheses H0 and H1 are tied when x = 0. But unlike
the ML rule, the MAP rule is the rule which minimizes the probability of error. Because
of this, it turns out that the error probability will be the same irrespective of how we
decide when x = 0. To demonstrate this, let us first decide H1 when x = 0. In this case,

the MAP rule becomes: DMAP(y) =

{
1 y = 0

0 y = 1, 2, 3, 4
, i.e. we have decision regions

AMAP
1 = {0} and AMAP

0 = {1, 2, 3, 4}. We can now work out the probabilities of false
alarm, missed detection, and error

PMAP
FA =

∑
y∈AMAP

1

PY |H0
(y) = PY |H0

(0) =
1

16

PMAP
MD =

∑
y∈AMAP

0

PY |H1
(y)

= PY |H1
(1) + PY |H1

(2) + PY |H1
(3) + PY |H1

(4) =
3

8
+

3

8
+

1

8
+ 0 =

7

8

PMAP
error = PMAP

FA P[H0] + PMAP
MD P[H1] =

1

16
· 2
3
+

7

8
· 1
3
=

1

3

Now suppose that we decide H0 (instead of H1) when x = 0. In this case, the MAP rule

becomes: DMAP(y) =

{
1 never

0 y = 0, 1, 2, 3, 4
, i.e. we have decision regions AMAP

1 = { }

and AMAP
0 = {0, 1, 2, 3, 4}. We can now work out the probabilities of false alarm, missed

detection, and error

PMAP
FA =

∑
y∈AMAP

1

PY |H0
(y) = 0

PMAP
MD =

∑
y∈AMAP

0

PY |H1
(y)

= PY |H1
(0) + PY |H1

(1) + PY |H1
(2) + PY |H1

(3) + PY |H1
(4) =

2

16
+

3

8
+

3

8
+

1

8
+ 0 = 1

PMAP
error = PMAP

FA P[H0] + PMAP
MD P[H1] = 0 · 2

3
+ 1 · 1

3
=

1

3

which is the same error probability we got when we decide H1 for x = 0.

Problem 8.3 (Video 6.1, 6.2, 6.3)

This problem is meant to walk through some of the steps carried out algorithmically in Lab 8.
(It will likely be easier to complete this problem once you have finished at least the first half
of the lab.) Below are tables of training and testing data. You will use the training data to
determine the Gaussian ML rule and then use the testing data to evaluation its performance.
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Table 1: Training Data
Y label

3.2 1
0.8 1
0.1 0
-2.1 0

Table 2: Testing Data
Y label

2.0 1
0.7 1
0.1 1
1.1 0
-2.9 0
-1.6 0

(a) Use the training data to estimate the mean µ0 under label 0 and the mean µ1 under label
1. This can be done by simply averaging the training with that label.

Solution:

µ0 =
1

2
(0.1− 2.1) = −1 µ1 =

1

2
(3.2 + 0.8) = 2

(b) Assuming the variances under label 0 and 1 are equal to σ2, determine the ML rule DML(y).
Specifically, assume that the data Y with label 0 is generated according to Gaussian(µ0, σ

2)
and the data Y with label 1 is generated according to Gaussian(µ1, σ

2).

Solution:

For Gaussians with equal variance, the ML rule takes a simple form, which we can
quickly derive using the log-likelihood ratio:

L(y) =

1√
2πσ2

exp

(
− (y − µ1)

2

2σ2

)
1√
2πσ2

exp

(
− (y − µ0)

2

2σ2

) = exp

(
(y − µ0)

2

2σ2
− (y − µ1)

2

2σ2

)

ln(L(y)) =
(y − µ0)

2

2σ2
− (y − µ1)

2

2σ2

DML(y) =

{
1 ln(L(y)) ≥ 0

0 ln(L(y)) < 0
=

{
1 (y − µ0)

2 − (y − µ1)
2 ≥ 0

0 (y − µ0)
2 − (y − µ1)

2 < 0

To simplify this further, we need to plug in our values µ0 = −1 and µ1 = 2 in to get
(y + 1)2 − (y − 2)2 = y2 + 2y + 1− y2 + 4y − 4 = 6y − 3. We finally get that

DML(y) =

{
1 6y − 3 ≥ 0

0 6y − 3 < 0
=

{
1 y ≥ 1

2

0 y < 1
2

(c) Sketch the conditional PDFs Gaussian(µ0, σ
2) and Gaussian(µ1, σ

2) on the same plot along
with the decision boundary from the ML rule. (You can assume σ2 = 1.)

Solution:
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−3 −2 −1 1
2

1 2 3 4

1/4

1/2
fY |H0

(y) fY |H1
(y)

y

(d) Add the testing data to your sketch just as in Lab 8. Use circles for testing data with label
0 and squares for testing data with label 1.

Solution:

−3 −2 −1 1
2

1 2 3 4

1/4

1/2
fY |H0

(y) fY |H1
(y)

y

(e) Draw a star inside each testing data on the plot that will be misclassified by the ML rule.

Solution:

−3 −2 −1 1
2

1 2 3 4

1/4

1/2
fY |H0

(y) fY |H1
(y)

y

(f) Estimate the probability of error as the fraction of misclassified points.

Solution:

2 out of 6 test data points are misclassified so we estimate the probability of error as
2/6 = 1/3.

Problem 8.4 (Video 7.1, 7.2, Lecture Problem)

Consider the following joint PDF

fX,Y (x, y) =


4

π
x ≥ 0, y ≥ 0, x2 + y2 ≤ 1

0 otherwise.
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Note this is a uniform distribution over a quarter disk of radius 1.

(a) Determine the MMSE estimator x̂MMSE(y) of X given Y = y.

Solution:

To solve for x̂MMSE(y) = E[X|Y = y], we will first need the conditional PDF fX|Y (x|y),
which itself requires us to find the marginal PDF fY (y).

fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx =


∫ √

1−y2

0

4

π
dx 0 ≤ y ≤ 1

0 otherwise

=


4

π

√
1− y2 0 ≤ y ≤ 1

0 otherwise

fX|Y (x|y) =


fX,Y (x, y)

fY (y)
fY (y) > 0

0 otherwise.
=


1√

1− y2
x ≥ 0, y ≥ 0, x2 + y2 ≤ 1

0 otherwise.

x̂MMSE(y) = E[X|Y = y] =

∫ ∞

−∞
xfX|Y (x|y) dx =

∫ √
1−y2

0

x√
1− y2

dx =
1

2

√
1− y2

(b) Determine the Mean Square Error of the MMSE estimator E
[(
X − x̂MMSE(Y )

)2]
.

Solution:

Plugging in the specific form of the MMSE estimator, we get

E
[(
X − x̂MMSE(Y )

)2]
= E

[(
X − 1

2

√
1− Y 2

)2]
= E

[
X2 −X

√
1− Y 2 +

1

4
(1− Y 2)

]
= E[X2]− E

[
X
√
1− Y 2

]
+

1

4
− 1

4
E[Y 2] .

We now evaluate the individual terms (the numerical answers were obtained via Wolfram
Alpha, but could also be derived using trigonometric identities),

E[Y 2] =

∫ ∞

−∞
y2fY (y) dy =

∫ 1

0
y2

4

π

√
1− y2 dy =

1

4

E[X2] =
1

4
(by symmetry)

E
[
X
√

1− Y 2
]
=

∫ ∞

−∞
x
√

1− y2fX,Y (x, y) dxdy =

∫ 1

0

∫ √
1−y2

0
x
√
1− y2

4

π
dx dy =

3

8
.

Plugging in, we get

E
[(
X − x̂MMSE(Y )

)2]
=

1

4
− 3

8
+

1

4
− 1

4
· 1
4
=

1

16
.

(c) Let X,Y be joint Gaussian random variables, with zero mean, and Var[X] = Var[Y ] = 2,
Cov[X,Y ] = 1. Determine the MMSE estimator x̂MMSE(y) of X given Y = y.
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Solution:

For joint Gaussians,

E[X|Y = y] = E[X] +
Cov[X,Y ]

Var[Y ]
(y − E[Y ]) =

1

2
y .

(d) Determine the Mean Square Error of the MMSE estimator in the previous part, E
[(
X −

x̂MMSE(Y )
)2]

.

Solution:

For joint Gaussians,

MSE = Var[X]− (Cov[X,Y ])2

Var[Y ]
= 2− 1

2
=

3

2
.
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