
EK381 Probability, Statistics, and Data Science for Engineers Boston University
Prof Carruthers Summer 2025

Homework 7: finish by 6/16

Reading: Notes: Chapter 4, 5. Videos: 5.1 - 5.6

Problem 7.1 (Video 5.1, 5.2, 5.3) In the videos, we introduced the contour plot as a use-
ful way to visualize the joint PDF. The scatter plot is a related method for visualizing two-
dimensional datasets, which places a marker (e.g., a dot) for each point in the dataset. For
example, below are the contour plot and scatter plot (for 500 data points) for a pair of indepen-
dent Gaussian(0, 1) random variables.

We have provided several scenarios describing pairs of (continuous) random variables via contour
plots, scatter plots, and equations. For each of the following parts, list the scenarios that satisfy
the specified criteria. For the equations, this will require some quick calculations, but for the
contour and scatter plots you should be able to reason visually without calculations.

(a) E[X] noticeably more than 0

(b) E[Y ] noticeably less than 0

(c) Var[X] noticeably larger than Var[Y ]

(d) Cov[X,Y ] noticeably more than 0

(e)
∣∣ρX,Y

∣∣ close to 1
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Scenario 1 Scenario 2 Scenario 3

Scenario 4 Scenario 5 Scenario 6

Scenario 7 Scenario 8 Scenario 9

Problem 7.2 (Video 5.1 - 5.6, Quick Calculations)

For each of the scenarios below, determine the requested quantities. (You should be able to do
this without any long calculations or integration.)

(a) Let X and Y be random variables with E[X] = E[Y ] = 1, E[X2] = E[Y 2] = 5, and
ρX,Y = −1

4 . Calculate Var[X] and Cov[X,Y ].

(b) Let X be a random variable with Var[X] = 5 and let Y = 2X − 3. Calculate Cov[X,Y ] and
ρX,Y .

(c) Let X and Y be random variables with E[X] = 1, E[Y ] = −1, Var[X] = 4, Var[Y ] = 2, and
Cov[X,Y ] = 1. Let W = X + Y and Z = 2X − Y . Calculate E[W + Z] and Cov[W,Z].

(d) Let X and Y be jointly Gaussian random variables with E[X] = 2, E[Y ] = −1, Var[X] = 4,
Var[Y ] = 1, and Cov[X,Y ] = −2. Calculate P[2X − Y ≤ 1] and P[X ≤ Y ]. (You may leave
your answers in terms of the standard normal CDF Φ(z).)

(e) Let X and Y be jointly Gaussian with E[X] = E[Y ] = 0, Var[X] = Var[Y ] = 2, and
Cov[X,Y ] = 1. Calculate E[X|Y = 2] and P[X < 0|Y = 2]. (You may leave your second
answer in terms of the Φ(z) function.)
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(f) Let X1 and X2 be jointly Gaussian with E[X1] = E[X2] = 0, Var[X1] = Var[X2] = 1, and
Cov[X1, X2] =

1
3 . Define Y1 = 2X1 + 1 and Y2 = X1 − X2 − 1. Define the random vector

Y =

[
Y1
Y2

]
. Calculate the mean vector µ

Y
and the covariance matrix ΣY .

Problem 7.3 (Video 5.1, 5.2, 5.3, 5.4, Lecture Problem)

A robot is tasked with moving 4 meters in both the x-direction and y-direction, starting from the
origin. However, due to wheel slippage and uneven terrain, its actual movement deviates from
the intended path. These deviations are modeled by a bivariate Gaussian distribution, where
the errors in both directions are positively correlated. Specifically, (X,Y ) is jointly Gaussian
with means E[X] = E[Y ] = 4, variances Var[X] = Var[Y ] = 0.25, and Cov[X,Y ] = 0.1.

(a) Compute the expected value E[W ] and variance Var[W ] of the robot’s movement in the
direction W = 1√

2
X + 1√

2
Y .

(b) Calculate the probability that the robot’s movement along this direction exceeds 6 meters.

(c) Suppose that, after the robot has completed its movement, we determine that its exact
position along the y-axis is 4.5 meters. Find the conditional distribution of the robot’s
position X given that Y = 4.5. Don’t forget the parameters.

(d) More generally, for a given y position, compute the conditional expected value of its x
position, E[X|Y = y].

Problem 7.4 (Video 5.5, 5.6, Lecture Problem)

Jointly Gaussian random variables play an important role in probability theory, due partly to
the fact that linear combinations of Gaussians are themselves Gaussian. This allows us to answer
complex questions by only calculating means and variances. Here, we will explore an application
of this phenomenon to the expected value. Let X1, . . . , Xn be independent Gaussian random
variables, with expected values E[Xi] = µ and variances Var[Xi] = σ2 for i = 1, . . . , n and let

Y =
1

n

n∑
i=1

Xi be their average. Intuitively, the random variable Y should get “closer” to µ as

the number of samples n increases. Below, we will try to make this intuition precise.

(a) Define X =

X1
...

Xn

. Determine its mean vector E[X] and covariance matrix ΣX .

(b) Express Y = AX for some matrix A. (Note that row vectors and column vectors are special
cases of matrices.)

(c) Determine E[Y ].

(d) Determine Var[Y ].

(e) Calculate the probability that Y is more than δ > 0 away from its mean, P
[∣∣Y −E[Y ]

∣∣ > δ
]
.

Express your answer in terms of the standard normal complementary CDF Q(z) = 1−Φ(z).

(f) Using the fact that Q(3.29) = 1
2000 , calculate how many samples n are needed, as a function

of the variance σ2 to guarantee that P
[∣∣Y − E[Y ]

∣∣ > 1
10

]
is 1

1000 or smaller.
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