Homework 6: finish by 6/12.

Reading: Notes: Chapter 4, 5.

Problem 6.1 (Video 4.1 - 4.7, Lecture Problem)

Let X be Uniform [1, 2]. Let Y given X = x be Exponential (x). That is, let

$$f_{Y|X}(y|x) = \begin{cases} xe^{-xy} & y \ge 0\\ 0 & y < 0 \end{cases}$$

- (a) Find the expected value of Y. (It is OK to leave your answer as an integral.)
- (b) Find the conditional expected value $\mathbb{E}[Y|X = x]$ of Y given X = x. (This should be in closed form.)
- (c) Using $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]]$ find the expected value of Y. (This should be in closed form.)
- (d) Solve for $\mathbb{E}[XY]$. (It is OK to leave your answer as an integral.)

Problem 6.2 (Video 4.6, 4.7, 5.1, 5.2, Lecture Problem)

Consider the joint PDF $f_{X,Y}(x,y) = \begin{cases} x & y \le x \le y+1 \text{ and } 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$

- (a) Draw a sketch of the range $R_{X,Y}$.
- (b) What is the probability that 2Y is greater than X?
- (c) Are X and Y independent? Explain.
- (d) Compute $E[X^2]$.
- (e) Compute Cov[X, Y].
- (f) Compute $\rho_{X,Y}$.
- (g) Compute $f_{X|Y}(x|y)$.
- (h) Compute $\mathbb{E}[2X+1|Y]$.

Problem 6.3 (Video 4.6, 4.7, 5.1, 5.2)

Consider the following joint PDF $f_{X,Y}(x,y) = \begin{cases} \frac{x}{4} + \frac{y}{2} & 0 \le x \le 2, \ 0 \le y \le 1\\ 0 & \text{otherwise.} \end{cases}$

Videos: 4.7, 5.1 - 5.2

- (a) Draw a sketch of the range $R_{X,Y}$.
- (b) Are X and Y independent?
- (c) What is the probability that Y is greater than X^2 ?
- (d) Determine the marginal PDFs $f_X(x)$ and $f_Y(y)$.
- (e) Calculate Cov[X, Y].
- (f) Calculate $\rho_{X,Y}$.
- (g) Determine the conditional PDF $f_{X|Y}(x|y)$.
- (h) Calculate the conditional expected value $\mathbb{E}[X|Y=y]$.
- (i) Using the iterated expectation formula $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$ and your answer from part (h), determine $\mathbb{E}[X]$. Compare with the answer you found from the marginals as part of your calculations for part (e).

Problem 6.4 (Video 4.5, 4.7, Quick Calculations)

Parts (a) - (d): For each of the scenarios below, determine if X and Y are independent, and give a justification. (You should be able to do this without any long calculations or integration.)

(a)
$$f_{X,Y}(x,y) = \begin{cases} 2 & 0 \le x \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

(b) Y given X is Geometric $(\frac{x+1}{3})$ and X is Bernoulli(1/2).

(c)
$$f_{X,Y}(x,y) = \begin{cases} \frac{9}{38}x^2y^2 & -1 \le x \le 1, 2 \le y \le 3\\ 0 & \text{otherwise} \end{cases}$$

(d)
$$\begin{array}{c|c} y \\ \hline P_{XY}(x,y) & 0 & 1 \\ \hline x & 0 & 1/15 & 4/15 \\ \hline x & 1 & 2/15 & 8/15 \end{array}$$

Parts (e) - (f): For each of the scenarios below, determine the requested quantities. (You should be able to do this without any long calculations or integration.)

- (e) Let X be Poisson(3) and Y given X = x be Binomial $(x, \frac{1}{3})$. Calculate $\mathbb{E}[Y|X = x]$ and $\mathbb{E}[Y]$.
- (f) Let X be Uniform $(\frac{1}{2}, \frac{5}{2})$. Let Y given X = x be Exponential $(\frac{1}{2x})$. Calculate $\mathbb{E}[Y|X = x]$ and $\mathbb{E}[Y]$.