
EK381 Probability, Statistics, and Data Science for Engineers Boston University
Prof Carruthers Summer 2025

Homework 2. Finish By 5/28.

Reading: Notes: Chapter 1, Chapter 2. Videos: 1.5, 1.6, 2.1, 2.2

Quick Calculations: Every homework will have a problem that focuses on quick calculations
to help you get familiar with the mechanics of the concepts introduced that week. This will also
help prepare you for exams, which will also include a similar problem.

Problem 2.1 (Video 1.5, Lecture Problem) Consider an experiment with sample space
Ω = {1, 2, 3, 4, 5, 6, 7, 8}. The outcomes have probabilities

P[{1}] = 1

4
P[{2}] = 1

4
P[{3}] = 1

8
P[{4}] = 1

8

P[{5}] = 1

16
P[{6}] = 1

16
P[{7}] = 1

16
P[{8}] = 1

16
.

We also define the events

A = {1, 3, 4} B = {2, 3, 4} C = {3, 4, 5, 6, 7, 8}
D = {2, 3, 5, 6} E = {2, 4, 6, 7} F = {5, 6, 7, 8} .

For each of the following questions, give a “Yes” or “No” answer as well as your reasoning and
calculations.

(a) Are the events A, B, and C independent? If not, are they at least pairwise independent?

(b) Are the events A and D independent?

(c) Are the events A and F independent?

(d) Are the events B and Ω independent?

(e) Are the events D, E, and F independent? If not, are they are least pairwise independent?

(f) Are the events A and D conditionally independent given C?

Solution:

(a) No, A, B, and C are not independent. However, they are pairwise independent. Here
are the calculations:

P[A] = P
[
{1, 3, 4}

]
=

1

4
+

1

8
+

1

8
=

1

2

P[B] = P
[
{2, 3, 4}

]
=

1

4
+

1

8
+

1

8
=

1

2

P[C] = P
[
{3, 4, 5, 6, 7, 8}

]
=

1

8
+

1

8
+

1

16
+

1

16
+

1

16
+

1

16
=

1

2

P[A ∩B] = P
[
{3, 4}

]
=

1

8
+

1

8
=

1

4

1



P[A ∩ C] = P
[
{3, 4}

]
=

1

4

P[B ∩ C] = P
[
{3, 4}

]
=

1

4

P[A ∩B ∩ C] = P
[
{3, 4}

]
=

1

4

P[A ∩B ∩ C] ̸= P[A]P[B]P[C] =⇒ not independent

P[A ∩B] = P[A]P[B]

P[A ∩ C] = P[A]P[C]

P[B ∩ C] = P[B]P[C]

 =⇒ pairwise independent

(b) No, A and D are not independent. Here are the calculations:

P[A] =
1

2
from part (a)

P[D] = P
[
{2, 3, 5, 6}

]
=

1

4
+

1

8
+

1

16
+

1

16
=

1

2

P[A ∩D] = P[3] =
1

8

P[A ∩D] ̸= P[A]P[D] =⇒ not independent

(c) No, A and F are not independent. (Notice that they are mutually exclusive, which
often means that they are dependent, except in the special case where either event has
probability 0.) Here are the calculations:

P[A] =
1

2
from part (a)

P[F ] = P
[
{5, 6, 7, 8}

]
=

1

16
+

1

16
+

1

16
+

1

16
=

1

4
P[A ∩ F ] = P[∅] = 0

P[A ∩ F ] ̸= P[A]P[F ] =⇒ not independent

(d) Yes, the events B and Ω (the sample space) are independent. In fact, the sample space
Ω is independent of any event. Here are the calculations, just to check:

P[Ω] = 1

P[B ∩ Ω] = P[B]

P[B ∩ Ω] = P[B]P[Ω] =⇒ independent

(e) No, D, E, and F are not independent. They are also not pairwise independent. The
issue is that D and E are not independent. Here are the calculations:

P[D] =
1

2
from part (b)
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P[E] = P
[
{2, 4, 6, 7}

]
=

1

4
+

1

8
+

1

16
+

1

16
=

1

2

P[D ∩ E] = P
[
{2, 6}

]
=

1

4
+

1

16
=

5

16

P[D ∩ E] ̸= P[D]P[E] =⇒ not independent

(f) Yes, A and D are conditionally independent given C. (Recall that, from part (b),
A and D are not independent. In general, conditional independence does not imply
independence. Similarly, independence does not imply conditional independence.) Here
are the calculations:

P[C] =
1

2
from part (a)

P[A|C] =
P[A ∩ C]

P[C]
=

P
[
{3, 4}

]
1
2

=
1
4
1
2

=
1

2

P[D|C] =
P[D ∩ C]

P[C]
=

P
[
{3, 5, 6}

]
1
2

=
1
4
1
2

=
1

2

P[A ∩D|C] =
P[A ∩D ∩ C]

P[C]
=

P[3]
1
2

=
1
8
1
2

=
1

4

P[A ∩D|C] = P[A|C]P[D|C] =⇒ conditionally independent

Problem 2.2 (Video 1.5, 1.6, Lecture Problem) Consider the following scenario. You play
a simple game with probability of winning 1/4. You play this game repeatedly until your third
loss, and then stop playing. Assume all games are independent.

(a) What is the probability of the following specific sequence of game outcomes: Win, Lose,
Win, Lose, Lose?

Solution:

Let Wi be the event that you win the ith game. By independence, we have that

P[W1 ∩W c
2 ∩W3 ∩W c

4 ∩W c
5 ] = P[W1]P[W c

2 ]P[W3]P[W c
4 ]P[W c

5 ]

=
1

4
· 3
4
· 1
4
· 3
4
· 3
4
=

27

1024

(b) How many different sequences of games are there that end after exactly 5 games? (Hint:
you must lose the last game to stop. There aren’t that many, so you can enumerate them.)

Solution:

First, notice that the fifth game must be a loss, since you stop at 5 games. Thus, we
have 2 losses to place in the first 4 slots. This is done without replacement and order

does not matter (since one loss is the same as any other). Thus, there are

(
4

2

)
= 6

different sequences of games that end at exactly 5 games.

(c) What is the probability of playing exactly 5 games?
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Solution:

Each of the 6 possible sequences of exactly 5 games has probability
27

1024
. Thus, the

probability of playing exactly 5 games is
6 · 27
1024

=
81

512
.

(d) Given that you play exactly 5 games, what is the probability that your first game ended in
a loss?

Solution:

First, note that each of the 6 possible sequences of exactly 5 games with 3 losses has
the same probability. Thus, we can simply count how many ways there are to place 3
losses in 5 games, with one loss reserved for the fifth slot and another reserved for the

first slot. There are

(
3

1

)
= 3 such sequences, and the probability of seeing one of these

is just
3

6
=

1

2
.

(e) Now, let’s generalize this a bit. Say the probability of winning an individual game is p and
that you play until your mth loss. What is the probability of playing exactly k games?

Solution:

A specific sequence that ends on the kth game has probability pk−m(1 − p)m by inde-
pendence. Since one loss is reserved for the last slot, there are k − 1 free slots and

m− 1 losses to place. Thus, there are

(
k − 1

m− 1

)
possible sequences of exactly k games.

Finally, the probability of playing exactly k games is

(
k − 1

m− 1

)
pk−m(1− p)m. Note: If

k < m then the probability of playing exactly k games is zero since you can never get
more losses than the number of games you play.

Problem 2.3 (Video 1.6) You would like to evaluate the probability of success for testing a
batch of n widgets. To start out, let’s assume that if there is a problem with the batch, exactly
1 out of the n widgets are defective. You are willing to test only k of the widgets (due to budget
or times constraints).

(a) How many ways are there of testing k out of n widgets?

(b) How many ways are there of testing k widgets with the defective widget included?

(c) Use your answers from parts (a) and (b) to determine the probability of catching a defective
batch.

(d) Evaluate your answer from part (c) for n = 20 and k = 5.

(e) Now, say that a defective batch contains exactly 2 defective widgets. How many ways are
there of testing k widgets with at least one defective widget included? (You may assume
that k > 2.)
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(f) Use your answer from part (e) to determine the probability of catching a defective batch.

(g) Evaluate your answer from part (f) for n = 20 and k = 5.

Solution:

(a) There are

(
n

k

)
ways of testing k out of n processors since order does not matter.

(b) There are

(
1

1

)
·
(
n− 1

k − 1

)
=

(
n− 1

k − 1

)
ways of testing k processors with the defective

processor included. Intuitively, one of the choices is used on the defective processor and
the remaining k − 1 are spent on the n− 1 non-defective processors.

(c) Let C be the event that we catch a defective batch of processors. The probability is
simply the ratio of the number of ways to test with the defective processor included
over the total number of ways to test,

P[C] =

(
n− 1

k − 1

)
(
n

k

) =

(n− 1)!

(n− 1− (k − 1))!(k − 1)!
n!

(n− k)!(k)!

=

(n− 1)!

(n− k)!(k − 1)!
n!

(n− k)!(k)!

=

k!

(k − 1)!
n!

(n− 1)!

=
k

n
.

(d) Plugging in n = 20 and k = 5 into our formula from part (c), we get

P[C] =
5

20
=

1

4
.

(e) The first step is to realize that we need to count the events that we test exactly 1 or 2
defective widgets separately and then add them up. The number of ways of testing k

widgets with exactly i < k defective widgets included is

(
2

i

)
·
(
n− 2

k − i

)
. Therefore, the

total number of tests that include at least one defective widget is(
2

1

)
·
(
n− 2

k − 1

)
+

(
2

2

)
·
(
n− 2

k − 2

)
= 2 ·

(
n− 2

k − 1

)
+ 1 ·

(
n− 2

k − 2

)
.

(f) Let C be the event that we catch a defective batch of widgets. The probability is simply
the ratio of the number of ways to test with the defective widget included over the total
number of ways to test,

P[C] =

2 ·
(
n− 2

k − 1

)
+ 1 ·

(
n− 2

k − 2

)
(
n

k

) .
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(g) Plugging in n = 20 and k = 5 into our formula from part (c), we get

P[C] =

2 ·
(
18

4

)
+

(
18

3

)
(
20

5

) =
2 · 3060 + 816

15504
=

6936

15504
=

17

38
≈ 0.447 .

Problem 2.4 (Video 2.1, 2.2, Lecture Problem)

−2 −1 1 2 3

1
10

2
10

3
10

x

PX(x)

Consider the PMF above and let A = {−2,−1, 3}.

(a) Calculate the probability that X falls into A, P[X ∈ A].

Solution:

P[X ∈ A] =
∑
x∈A

PX(x) = PX(−2) + PX(−1) + PX(3) =
2

10
+

3

10
+

2

10
=

7

10

(b) Calculate the probability that X2 exceeds 1, P[X2 > 1].

Solution:

First, notice that we can translate the condition X2 > 1 into membership in a set
C = {x ∈ RX : x2 > 1} = {−2, 2, 3}. Therefore, we have that

P[X2 > 1] = P[X ∈ C]

=
∑
x∈C

PX(x) = PX(−2) + PX(2) + PX(3) =
2

10
+

2

10
+

2

10
=

3

5

(c) Given that {X ∈ A} occurs, what is the conditional probability that X2 exceeds 1,
P[X2 > 1|X ∈ A]?
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Solution:

By the definition of conditional probability,

P[X2 > 1|X ∈ A] = P[X ∈ C|X ∈ A]

P[{X ∈ C} ∩ {X ∈ A}]
P[X ∈ A]

P[X ∈ (C ∩A)]

P[X ∈ A]
.

Now, note that C ∩A = {−2, 3} and

P[X ∈ (C ∩A)] =
∑

x∈C∩A
PX(x) = PX(−2) + PX(3) =

2

10
+

2

10
=

2

5
.

Combining this with our answer from part (a), we get

P[X2 > 1|X ∈ A] =
2/5

7/10
=

4

7
.

(d) Determine the CDF FX(x).

Solution:

−2 −1 1 2 3

0.2

0.4

0.6

0.8

1

x

FX(x)

Problem 2.5 (Video 1.5, 1.6, 2.1, 2.2, Quick Calculations) Calculate each of the requested
quantities.

(a) Let A and B be independent events with P[A] = 1/5 and P[B] = 1/4. Calculate P[A ∩ B]
and P[A ∪B].

(b) Let A1, A2, A3 be events that are conditionally independent given B. Additionally, assume
that A1, A2, A3 are conditionally independent given Bc. Assume that P[Ai|B] = 1/4 and
P[Ai|Bc] = 1/2 for i = 1, 2, 3 and P[B] = 1/3. Calculate P[A1∩Ac

2∩A3|B] and P[A1∩Ac
2∩A3].

(c) Consider a packet of jellybeans that contains 9 jellybeans, of which 4 are lemon and the
remaining 5 are raspberry. You reach in and pull out 3 jellybeans. What is the probability
that they are all lemon? What is the probability that they are all raspberry?
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(d) Let X be a random variable with PMF PX(x) =

{
1/6 x = −1,+1

2/3 x = 0
. Calculate P[X ̸= 0]

and P[X > 0|X ̸= 0].

(e) If the random variable Y has CDF FY (y) =


0 y < 1

1/4 1 ≤ y < 5

1 5 ≤ y

, what is the PMF of Y ?

Solution:

(a) Since A and B are independent, we have that P[A ∩ B] = P[A]P[B] = 1
5 · 1

4 = 1
20 . By

the inclusion-exclusion property, we have that

P[A ∪B] = P[A] + P[B]− P[A ∩B] =
1

5
+

1

4
− 1

20
=

8

20
=

2

5
.

(b) Since A1, A2, A3 are conditionally independent given B, we know that A1, A
c
2, A3 are

also conditionally independent given B. Therefore, we have that

P[A1 ∩Ac
2 ∩A3|B] = P[A1|B]P[Ac

2|B]P[A3|B] =
1

4
·
(
1− 1

4

)
· 1
4
=

3

64
.

To calculate P[A1 ∩Ac
2 ∩A3], we will use the Law of Total Probability,

P[A1 ∩Ac
2 ∩A3] = P[A1 ∩Ac

2 ∩A3|B]P[B] + P[A1 ∩Ac
2 ∩A3|Bc]P[Bc] .

We can use the fact that A1, A2, A3 are conditionally independent given Bc to get

P[A1 ∩Ac
2 ∩A3|Bc] = P[A1|Bc]P[Ac

2|Bc]P[A3|Bc] =
1

2
·
(
1− 1

2

)
· 1
2
=

1

8
.

Putting this together, we have

P[A1 ∩Ac
2 ∩A3] =

3

64
· 1
3
+

1

8
· 2
3
=

19

192
≈ 0.099 .

(c) First, note that we this is an order-independent, without-replacement sampling problem.
Therefore, if there are n items out of which we select k, we can make

(
n
k

)
possible

selections. The total number of ways to draw 3 out of 9 jellybeans is
(
9
3

)
= 84 and the

number of ways to choose 3 out of 4 yellow jellybeans is
(
4
3

)
= 4. Thus, the probability

of drawing all yellow jellybeans is 4
84 = 1

21 . Similarly, the number of ways to choose 3

out of 5 raspberry jellybeans is
(
5
3

)
= 10 and the probability of drawing all raspberry

jellybeans is 10
84 = 5

42 .

(d) First, we have that P[X ̸= 0] = PX(−1) + PX(+1) = 1/6 + 1/6 = 1/3. Second, using
the definition of conditional probability,

P[X > 0|X ̸= 0] =
P[X > 0]

P[X ̸= 0]
=

PX(+1)

1/3
=

1/6

1/3
=

1

2
.
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(e) The CDF jumps up at two points y = 1 and y = 5, and we use the heights of these

jumps to determine the PMF values: PY (y) =

{
1/4 y = 1

3/4 y = 5

9


