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• You have exactly 2 hours to complete this exam.

• No devices are allowed, including no phones and no calculators. No form of collaboration is allowed.

• You can use the provided formula sheet handouts – no other materials are allowed.

• All work to be graded must be included in this document. Submit no extra sheets.

• Box your final answers.

• There are 5 problems in total, each having 5 parts, with each part worth 4 points for a total of 100
points.

• Partial Credit: There will be partial credit for solution attempts even if not all the mathematical
manipulations are completed correctly. To maximize your chances for partial credit, attempt every
problem.

• Explanation: In order to receive full credit, all work should be supported by a concise explanation
that is clear, relevant, specific, logical, and correct. In particular, for each part, you must clearly
outline the key steps and provide proper justification for your calculations.

*** Good Luck! ***

Problem 1 (Markov Chains) 20 points

Consider the discrete-time, homogeneous Markov chain
X0, X1, X2, . . . , with state transition diagram shown in the
figure. Assume that X0 is equally likely to be in all five states.
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(a) (4 pts) Calculate P[X1 = 3] . Explain your work.
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Solution: P[X1 = 3] = 1
4

P[X1 = 3] =
∑5

i=1 P[X1 = 3|X0 = i] · P[X0 = i] = 1
5(14 + 1

2 + 0 + 1
2) = 1

4 .

(b) (4 pts) Identify the communicating classes and whether they are transient or recurrent.

Solution: Two communicating classes: C1 = {1, 2} transient, C2 = {3, 4, 5} recurrent.

(c) (4 pts) Determine the period of each state. Explain your work.

Solution: States 1, 2 have period 2. States 3, 4, 5 have period 1.

All states in a communicating class have the same period. The lengths of all cycles in communicating
class {1, 2} are all the multiples of 2⇒ their greatest common divisor (gcd) is 2 . Thus states 1 and
2 have a period of 2 . In communicating class {3, 4, 5} , there is a cycle of length 2 and a cycle of
length 3 starting at state 4 , namely, 4 → 5 → 4 and 4 → 5 → 3 → 4 , and their gcd is 1 . Thus
states 3, 4, 5 have a period of 1 .

(d) (4 pts) Compute the steady-state probability distribution of this Markov chain. Explain your work.

Solution: π1 = π2 = 0, π3 = 1
5 , π4 = π5 = 2

5

The steady-state probabilities of transient states is zero ⇒ π1 = π2 = 0.

In the steady state we have

π3 = 1
2 × π5 and π4 = 1× π3 + 1

2 × π5 which implies that π4 = π5 = 2π3 .

The normalization condition
∑5

i=1 πi = 1 gives us: 0 + 0 + π3 + 2π3 + 2π3 = 1⇒ 5π3 = 1⇒ π3 = 1
5 .

Therefore π4 = π5 = 2π3 = 2
5 .

(e) (4 pts) Suppose you are in state 4 at time 0, i.e., X0 = 4. Let T > 0 be the first time you return
back to state 4 , i.e., XT = 4 and Xt 6= 4 for all 0 < t < T . Compute E[T ] . Explain your work.

Solution: µ4 = 2.5

There are only two paths for returning back: X1 = 5, X2 = 4 or X1 = 5, X2 = 3, X3 = 4. For the
first path T = 2 and the probability of this path is 1 × 0.5 = 0.5 . For the second path, T = 3 and
the probability of this path is 1× 0.5× 1 = 0.5 . Thus, E[T ] = 2× 0.5 + 3× 0.5 = 2.5 .

Problem 2 (Machine Learning) 20 points
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Training Data

x1 x2 label

-1 -2 +
-1 0 +
2 0 +
2 2 +
1 1 -
0 1 -
1 0 -
0 0 -

Testing Data

x1 x2 label

0 2 -
0 0 +
1 -1 +

You are given the training data on the figure and table and the testing data in the table.

(a) (4 pts) Compute the sample mean vectors µ
+

and µ− and add them to the plot above.

Solution: µ
+

=
[−1−1+2+2

4 , −2+0+0+2
4

]>
= [0.5, 0]> µ− =

[
1+0+1+0

4 , 1+1+0+0
4

]>
= [0.5, 0.5]>

(b,c,d) (12 pts) In each figure shown below, determine if the decision boundary is for the Closest-Average,
LDA, QDA, or Nearest-Neighbor classifier or none of them. Explain your choices. In the figures below,
Class −1 and Class 1 points correspond to labels − and +, respectively.

Solution:
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Explanation: The Closest-Average classifier is the perpendicular bisector of the line joining µ
+

=

[0.5, 0]> and µ− = [0.5, 0.5]> which is the horizontal line with equation x2 = 0.25 . The QDA classifier

can have a quadratic (elliptical) boundary. The LDA classifier has a linear boundary whose orientation
is determined by the class-spreads and the class-means. The Nearest-Neighbor (NN) classifier has a
jagged, piece-wise linear boundary.

(e) (4 pts) Determine the number of training errors for the decision boundary shown in each figure above.
Determine the number of test errors for the Nearest-Neighbor classifier. In each figure, the decision is
+ in the darker shaded region and is − in the lighter shaded one.

Solution: The number of training errors is 0 for the QDA classifier and 3 for both the LDA and
Closest-Average classifiers.

The testing error of the NN classifier is 2: The nearest neighbor of (0, 2)> is (0, 1)> , of (0, 0)> is
(0, 0)> , and of (1,−1)> is (1, 0)> . Hence, only (0, 2)> is correctly classified.

Grading note: It is not sufficient to label one of the graphs above as Nearest-Neighbor (NN) and
then use that to calculate the test errors. Each of the test points is exactly distance 1 from one of the
training points, resulting in 2 test errors as calculated. A correct solution to problem 4(e) would then
allow for correcting any mislabeling of one of the figures from 4(bcd) as NN.

Problem 3 (Statistics) 20 points

You observe cars as they pass by on Comm Ave and note their arrival times. Let Xi be the time (in
minutes) between the arrival of the ith and (i + 1)st cars, i = 1, 2, 3, . . . . According to historical traffic
data, X1, X2, X3, . . . , are i.i.d. with Xi ∼ Exponential(λ) . You do not know the value of λ . Let Yi be the
time between the arrival of the ith and (i+ 100)th cars, i = 1, 2, 3, . . . .

Possibly useful:

Φ(−1.64) = FT2(−2.92) = FT99(−1.66) = 0.05

Φ(−1.96) = FT2(−4.30) = FT99(−1.98) = 0.025

Φ(−2.57) = FT2(−9.93) = FT99(−2.63) = 0.01

(a) (4 pts) Are Y1, Y2 , and Y3 i.i.d.? Are Y1 , Y101 , and Y201 i.i.d.? Clearly explain your reasoning in
both cases.

Solution: Y1, Y2 , and Y3 are NOT i.i.d. but Y1 , Y101 , and Y201 are i.i.d.

Y1 = X1 + . . .+X100, Y2 = X2 + . . .+X101 , and Y3 = X3 + . . .+X102 , all depend on X3, X4, . . . , X100

and thus are not independent. The Yi ’s are identically distributed since the Xi ’s are i.i.d.
Y1, Y101, Y201 are identically distributed because each of them is the sum of 100 i.i.d. exponential
random variables. They are also independent because they are the sum of 3 non-overlapping sets of
100 i.i.d. random variables: Y1 = X1+. . .+X100 , Y101 = X101+. . .+X200 , and Y201 = X201+. . .+X300 .

(b) (4 pts) Compute E[Y1] in terms of λ . Simplify its form as much as you can. Explain your work.
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Solution: E[Y1] = 100/λ E[Y1] = E[X1] + . . .+ E[X100] = 100E[X1] = 100/λ .

(c) (4 pts) Compute P[Y1 ≥ 200/λ] . Assume that the Central Limit Theorem applies. You may leave
your answer in the form of a CDF. Explain your work.

Solution: P[Y1 ≥ 200/λ]
CLT
= 1− Φ(10)

Var[Y1] = Var[X1] + . . .+ Var[X100] = 100Var[X1] = 100/λ2 .

By the Central Limit Theorem, Y1 ∼ Gaussian(100/λ, 100/λ2) .

Thus,

P[Y1 ≥ 200/λ] = 1− P[Y1 < 200/λ]
CLT
= 1− Φ[(200/λ− 100/λ)/

√
(100/λ2)] = 1− Φ(10)

(d) (4 pts) From the first 101 cars that you observe, you find that y1 = 200 . Can you reject the hypothesis
that λ = 1, at a two-tailed significance level of α = 0.05? Explain your work.

Solution: We can reject the hypothesis.

If the hypothesis is true, then P[Y1 ≥ y1] = P[Y1 ≥ 200/1] = P[Y1 ≥ 200/λ]
CLT
= 1−Φ(10) = Φ(−10) <

Φ(−1.96) = 0.025 = α/2 . So yes, we can reject the hypothesis.

(e) (4 pts) From observing the first 301 cars, you find that y1 = 200, y101 = 240 , and y201 = 190 . Find
the 95% confidence interval (CI) for E[Y1000] centered around M3 = (Y1 + Y101 + Y201)/3 . Explain
your work.

Solution: The 95% CI for µY is [210− 43
√

7/3, 210 + 43
√

7/3]

Firstly, Y1 , Y101 , and Y201 , and Y1000 are i.i.d. with the same mean µY = E[Y1] = 100/λ and M3 is
an unbiased estimate of µY since E[M3] = (E[Y1] + E[Y101] + E[Y201])/3 = E[Y1] = µY .

The sample variance is V3 = [(200−210)2+(240−210)2+(190−210)2]/(3−1) = (100+900+400)/2 =
700 .

Since the number of observations is small (n = 3 ≤ 30 ), and since Y1 , Y101 , and Y201 are i.i.d.,
the confidence interval should use a t-distribution instead of a z-distribution. The number of degrees
of freedom is 3 − 1 = 2 . Thus, the 95% CI is [M3 − ε,M3 + ε] , with ε =

√
V3/n|F−1T2

(−0.025)| =√
700/3× 4.30 = 43

√
7/3 .

Altogether, the CI is [210− 43
√

7/3, 210 + 43
√

7/3] .

Problem 4 (Estimation) 20 points

Let Y be a discrete random variable (RV) with PMF pY (1) = pY (3) = 0.5 and let Z be a Gaussian RV
with zero mean and variance σ2 > 0 . The RVs Y and Z are independent. Let X = 2Y + Z where 2Y

means “two to the power of Y ”.
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(a) (4 pts) Compute the MMSE estimator x̂MMSE(y) of X based on Y . Simplify its form as much as
you can. Explain your work.

Solution: x̂MMSE(y) = 2y .

x̂MMSE(y) = E[X|Y = y] = E[2Y + Z|Y = y] = E[2Y |Y = y] + E[Z|Y = y] = 2y + E[Z] = 2y + 0 = 2y

where E[Z|Y = y] = E[Z] since Z is independent of Y .

(b) (4 pts) Compute the Mean Squared-Error (MSE) of the MMSE estimator: E[(X − x̂MMSE(Y ))2] in
terms of σ . Simplify its form as much as you can. Explain your work.

Solution: E[(X − x̂MMSE(Y ))2] = σ2 .

E[(X − x̂MMSE(Y ))2] = E[(X − 2Y )2] = E[(2Y + Z − 2Y )2] = E[Z2] = σ2.

Note: Since Y only takes two values with positive probability, namely y = 1 and y = 3, any function
h(y) such that h(1) = 21 = 2 and h(3) = 23 = 8, will have the same MSE as the MMSE estimator,
e.g., the linear function h(y) = 3y − 1 .

(c) (4 pts) Let x̂LLSE(y) = uy + v be the LLSE estimator of X based on Y . Compute the exact
numerical values of the coefficients u and v and verify that they do not depend on σ . Explain your
work.

Solution: u = 3, v = −1

x̂LLSE(y) = E[X] +
Cov[X,Y ]

Var[Y ]
(Y − E[Y ])

Thus, u = Cov[X,Y ]
Var[Y ] and v = E[X]− uE[Y ] .

E[Y ] = (1+3)
2 = 2,

E[2Y ] = (21+23)
2 = 5,

E[X] = E[2Y ] + E[Z] = E[2Y ] = 5 ,

Var[Y ] = E[(Y − E[Y ])2] = 0.5(1− 2)2 + 0.5(3− 2)2 = 1.
Cov[Z, Y ] = 0 because Z and Y are independent.
Cov[X,Y ] = Cov[(2Y + Z), Y ] = Cov[2Y , Y ] + Cov[Z, Y ] = Cov[2Y , Y ] =
= 0.5(21 − 5)(1− 2) + 0.5(23 − 5)(3− 2) = 3 .

From this, it follows that
u = Cov[X,Y ]

Var[Y ] = 3
1 = 3 and

v = E[X]− uE[Y ] = 5− 3× 2 = −1 .

Observe that the values of u and v do not depend on σ .

Note: For y = 1, 3 , the linear function h(y) = 3y − 1 exactly matches the MMSE estimator
x̂MMSE(y) = 2y . Therefore, it must be the LLSE estimator.
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(d) (4 pts) Compute the Mean Squared-Error (MSE) of the LLSE estimator: E[(X − x̂LLSE(Y ))2] in
terms of σ . Simplify its form as much as you can. Explain your work.

Solution: E[(X − x̂LLSE(Y ))2] = σ2

E[(X − x̂LLSE(Y ))2] = Var[X]− (Cov[X,Y ])2

Var[Y ] .

We have already computed Cov[X,Y ] and Var[Y ] in part (d). Since Z is independent of Y , we have

Var[X] = Var[2Y + Z] = Var[2Y ] + Var[Z] = Var[2Y ] + σ2 = 0.5(21 − 5)2 + 0.5(23 − 5)2 + σ2 = 9 + σ2.

⇒ E[(X − x̂LLSE(Y ))2] = Var[X]− (Cov[X,Y ])2

Var[Y ] = σ2 + 9− 32

1 = σ2 .

Note: since the LLSE estimator exactly matches the MMSE estimator over the range of Y , it must
have the same MSE as the MMSE estimator, namely, σ2 .

(e) (4 pts) Determine, with proper explanation, whether X and Y are jointly Gaussian. Compare the
Mean Squared-Errors (MSEs) of the MMSE and LLSE estimators of X based on Y .

Solution: Since Y only takes the two values 1, 3 with positive probability, it is not a Gaussian
random variable. Therefore X,Y are not jointly Gaussian.

If X,Y were jointly Gaussian, then x̂MMSE(y) = x̂LLSE(y) for all values of y and their MSE would
be equal. In general, if X,Y are not jointly Gaussian, then the MMSE estimator will be different from
the LLSE estimator and the MSE of the MMSE estimator would be strictly smaller (better) than the
MSE of the LLSE estimator.

Interestingly, if Y takes only two distinct values (as in this problem), then the MMSE estimator
will exactly match the LLSE estimator for all values in the range of Y as you should verify, i.e., for
y = 1, 3 , x̂MMSE(y) = 2y = x̂LLSE(y) = 3y− 1 , and the MSE of the MMSE and the LLSE estimators
will be equal even though X,Y are not jointly Gaussian.

Problem 5 (Detection) 20 points

Consider the following detection problem with P[H0] = 1/3 and P[H1] = 2/3 and two observations Y1, Y2 .

Under H0 , (Y1, Y2) have a joint pdf which is uniform over the range 0 < y1 < 2 , 0 < y2 < 4 .

Under H1 , (Y1, Y2) have a joint pdf which is uniform over the range 0 < y1 < 4 , 0 < y2 < 2 .

range of Y1, Y2 under H0

y1

y2

0 1 2 3 4
0

1

2

3

4

range of Y1, Y2 under H1

y1

y2

0 1 2 3 4
0

1

2

3

4

(a) (4 pts) Compute the Maximum Aposteriori Probability (MAP) decision rule DMAP(y1, y2) . Simplify
its form as much as you can. Explain your work.

7



Solution: DMAP(y1, y2) =


1 (y1, y2) ∈ (0, 4)× (0, 2)
0 (y1, y2) ∈ (0, 2)× (2, 4)
0 or 1 equally good otherwise.

The pdfs under H0 and H1 are both zero outside the
shaded region ACDEFGA shown in the figure to the
right. Both pdfs are equal to 1/8 within the square
ABEHA. Within the square BCDEB, the pdf under
H0 is 1/8 and the pdf under H1 is zero. Within the
square HEFGH, the pdf under H0 is zero and the pdf
under H1 is 1/8 . Finally, P[H0] < P[H1] .

Union of ranges of (Y1, Y2) under H0, H1

y1

y2

0 1 2 3 4
0

1

2

3

4

A

B

C D

E F

GH

Therefore,
P[H0] fY1,Y2|H0

(y1, y2) < P[H1] fY1,Y2|H1
(y1, y2) within the rectangle ABFGA,

P[H0] fY1,Y2|H0
(y1, y2) > P[H1] fY1,Y2|H1

(y1, y2) within the square BCDEB,
P[H0] fY1,Y2|H0

(y1, y2) = P[H1] fY1,Y2|H1
(y1, y2) = 0 outside the region ACDEFGA.

Therefore,

DMAP(y1, y2) =


1 (y1, y2) ∈ (0, 4)× (0, 2)
0 (y1, y2) ∈ (0, 2)× (2, 4)
0 / 1 otherwise.
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GH

DMAP = 1

DMAP = 0

(b) (4 pts) Compute the probability of error PMAP
e for the MAP decision rule. Explain your work.

Solution: Pe = 1/6

Since DMAP(y1, y2) = 1 over the entire range of fY1,Y2|H1
(y1, y2) , i.e., within rectangle ABFGA,

PMD = 0.

Since DMAP(y1, y2) = 1 over half the range of fY1,Y2|H0
(y1, y2) , i.e., within square ABEHA, and

fY1,Y2|H0
(y1, y2) is uniform over its entire range, i.e., within rectangle ACDHA, we have PFA = 0.5 .

Therefore,
Pe = PFAP[H0] + PMDP[H1] = (1/2)(1/3) + (0)(2/3) = 1/6

(c) (4 pts) Compute the probability of error Pe when the decision rule is D(y1, y2) =

{
1 y2 ≤ y1
0 y2 > y1

.

Explain your work.

Solution: Pe = 1/4
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fY1,Y2|H0
is uniform within the rectangle ACDHA and

the within it, the region y2 ≤ y1 is the triangle AEHA
which has one-fourth the total area of the rectangle.
Thus, PFA = 0.25 . In a similar manner, we can deduce
that PMD = 0.25 .

y1

y2

0 1 2 3 4
0

1
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3

4

A

B
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E
F

GH

y 2
=
y 1

D = 1

D = 0

Therefore,

Pe = PFAP[H0] + PMDP[H1] = (1/4)(1/3) + (1/4)(2/3) = 1/4.

(d) (4 pts) Among all decision rules where the probability of false alarm is zero, determine the rule which
has the least probability of error. Simplify its form as much as you can. Explain your work.

Solution:

D0FA(y1, y2) =


0 (y1, y2) ∈ {range of fY1,Y2|H0

} = (0, 2)× (0, 4)

1 (y1, y2) ∈ {range of fY1,Y2|H1
} ∩ {range of fY1,Y2|H0

}c = [2, 4)× (0, 2)

0/1 equally good otherwise.

To make PFA = 0 we must decide 0 over the entire
range of fY1,Y2|H0

= (0, 2)×(0, 4) . Outside this region,
but within the range of fY1,Y2|H1

, we must decide 1
to minimize the error probability. All other observa-
tions would be outside the ranges of both pdfs and
the decisions we make there do not impact the error
probability. y1

y2

0 1 2 3 4
0

1

2

3

4

A

B

C D

E F

GH

D0FA = 1
D

0
F
A

=
0

For this rule, PMD = 0.5 since a missed detection occurs only if (y1, y2) arise from the pdf fY1,Y2|H1
,

which is uniform over (0, 4) × (0, 2) , and (y1, y2) ∈ (0, 2) × (0, 2) , whose area is exactly half that of
the range of fY1,Y2|H1

.

Therefore, for this rule,

Pe = PMDP[H1] = (1/2)(2/3) = 1/3.

(e) (4 pts) Suppose that we can only observe the sum Y = Y1 + Y2 and not Y1 and Y2 individually.
Determine the MAP decision rule based on observing Y , i.e., DMAP(y) . Simplify its form as much as
you can. Explain your work.

Solution: D(y) =

{
1 y ∈ (0, 6)

0 or 1 equally good otherwise.

Y has the same distribution under the two hypotheses, but P[H1] > P[H0] . Therefore, the MAP
decision is 1 over the entire range of Y which is (0 + 0 = 0, 2 + 4 = 6) . Decisions we make outside
the range of Y do not impact the error probability.
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