
EK381 Exam 3 Formula Sheet

6. Detection
• Two hypotheses H0 and H1. Observe a random variable Y .

Decide if H0 or H1 occurred based only on Y using a
decision rule D(y).

Discrete Case Continuous Case
PY |H0

(y) if H0 occurs fY |H0
(y) if H0 occurs

PY |H1
(y) if H1 occurs fY |H1

(y) if H1 occurs

• Decision Regions:
A0 = {y ∈ RY : D(y) = 0} A1 = {y ∈ RY : D(y) = 1}

• Probability of False Alarm: PFA = P[Y ∈ A1|H0]
• Probability of Missed Detection: PMD = P[Y ∈ A0|H1]
• Goal is to minimize the probability of error:

Pe = P[{error}] = PFA P[H0] + PMD P[H1]

• Likelihood Ratio: L(y) =
PY |H1

(y)

PY |H0
(y)

.

• Log-Likelihood Ratio: ln
(
L(y)

)
= ln

(
PY |H1

(y)

PY |H0
(y)

)
.

• For vector observations Y , we simply replace all occurrences
of Y with Y . For example, PY |H0

(y) becomes PY |H0
(y) and

PY |H1
(y) becomes PY |H1

(y).

Maximum Likelihood (ML) Rule
• Intuition: Choose hypothesis that best explains Y .
• In terms of the conditional PMFs for the discrete case,

DML(y) =

{
1, PY |H1

(y) ≥ PY |H0
(y),

0, PY |H1
(y) < PY |H0

(y).

• In terms of the conditional PDFs for the continuous case,

DML(y) =

{
1, fY |H1

(y) ≥ fY |H0
(y),

0, fY |H1
(y) < fY |H0

(y).

• In terms of the likelihood or log-likelihood ratio,

DML(y) =

{
1, L(y) ≥ 1,

0, L(y) < 1.
=

{
1, ln(L(y)) ≥ 0,

0, ln(L(y)) < 0.

Maximum a Posteriori (MAP) Rule
• Intuition: Choose the most likely hypothesis.
• In terms of the conditional PMFs for the discrete case,

DMAP(y) =

{
1, PY |H1

(y)P[H1] ≥ PY |H0
(y)P[H0],

0, PY |H1
(y)P[H1] < PY |H0

(y)P[H0].

• In terms of the conditional PDFs for the continuous case,

DMAP(y) =

{
1, fY |H1

(y)P[H1] ≥ fY |H0
(y)P[H0],

0, fY |H1
(y)P[H1] < fY |H0

(y)P[H0].

• In terms of the likelihood or log-likelihood ratio,

DMAP(y) =

{
1, L(y) ≥ P[H0]

P[H1]
,

0, L(y) <
P[H0]
P[H1]

.
=

{
1, ln(L(y)) ≥ ln

( P[H0]
P[H1]

)
,

0, ln(L(y)) < ln
( P[H0]
P[H1]

)
.

• This is the optimal decision rule in terms of minimizing the
probability of error. However, it requires knowledge of P[H0]
and P[H1] to implement the decision rule.

7. Estimation
• We observe a random variable Y and want to estimate an

unobserved random variable X using an estimator x̂(Y ).
• Goal: Minimize the mean-squared error:

MSE = E
[
(X − x̂(Y ))2

]
MMSE Estimator
• The minimum mean-squared error (MMSE) estimator is

x̂MMSE(y) = E
[
X|Y = y

]
.

• This is the optimal estimator in terms of MSE.

LLSE Estimator
• The linear least-squares error (LLSE) estimator is

x̂LLSE(y) = E[X] +
Cov[X,Y ]

Var[Y ]

(
y − E[Y ]

)
= E[X] + ρX,Y

σX

σY

(
y − E[Y ]

)
• Attains the minimum MSE amongst all linear estimators.

MSELLSE = Var[X]−
(
Cov[X,Y ]

)2
Var[Y ]

= σ2
X(1− ρ2X,Y )

• For jointly Gaussian X and Y , x̂LLSE(y) = x̂MMSE(y).

Vector Estimation
• We observe a random vector Y and want to estimate an

unobserved random vector X using an estimator x̂(Y ).

• Mean-Squared Error: MSE = E
[(
X − x̂(Y )

)T(
X − x̂(Y )

)]
• The vector MMSE estimator is

x̂MMSE(y) = E
[
X|Y = y

]
• The vector MMSE estimator attains the optimal MSE.
• The vector LLSE estimator is

x̂LLSE(y) = E[X] + ΣX,Y Σ−1
Y

(
y − E[Y ]

)
where ΣY is the covariance matrix of Y and ΣX,Y is the
cross-covariance matrix

ΣX,Y = E
[
(X − E[X])(Y − E[Y ])T

]
.

• The vector LLSE estimator attains the optimal MSE
amongst all linear estimators.

• If

[
X
Y

]
is a Gaussian vector, x̂LLSE(y) = x̂MMSE(y).

8. Sums of Random Variables
• Consider n random variables X1, X2, . . . , Xn.
• We are often interested in the behavior of the sum

Sn =
n∑
i=1

Xi or the sample mean Mn =
1

n

n∑
i=1

Xi.

• Expected Value of the Sum: E
[
Sn
]

=

n∑
i=1

E[Xi]

• Variance of the Sum: Var
[
Sn
]

=
n∑
i=1

n∑
j=1

Cov[Xi, Xj ]

• Random variables X1, . . . , Xn are said to be independent
and identically distributed (i.i.d.) if they are
independent and all Xi have the same marginal distribution,
which is a PMF PX(x) in the discrete case and a PDF
fX(x) in the continuous case.

• For i.i.d. X1, . . . , Xn, we have that E
[
Sn
]

= nE[X],

Var
[
Sn
]

= nVar[X], E
[
Mn
]

= E[X], Var
[
Mn
]

= Var[X]/n.

Laws of Large Numbers
• Weak Law of Large Numbers: Let X1, X2, . . . , Xn be

i.i.d. random variables with finite mean µ and sample mean
Mn. For any ε > 0, limn→∞ P

[
|Mn − µ| > ε

]
= 0.

• Strong Law of Large Numbers: Let X1, X2, . . . , Xn be
i.i.d. random variables with finite mean µ and sample mean
Mn. Then, P

[
limn→∞Mn = µ

]
= 1.

Central Limit Theorem
• Central Limit Theorem: Let X1, X2, . . . , Xn be i.i.d.

random variables with finite mean µ and finite variance σ2.

The CDF of Yn =
∑n

i=1(Xi−µ)
σ
√
n

converges to the standard

normal CDF, lim
n→∞

FYn (y) = Φ(y).

• For i.i.d. random variables with finite mean and variance,
then FYn (y) ≈ Φ(y) is a good approximation for n ≥ 30.

9. Statistics
• Let X1, . . . , Xn be i.i.d. random variables with mean

E[Xi] = µ and variance Var[Xi] = σ2.

• The sample mean is µ̂ = Mn =
1

n

n∑
i=1

Xi.

• Mn is unbiased estimator for the mean, E[Mn] = µ, with
variance Var[Mn] = σ2/n.

• The sample variance is σ̂2 = Vn =
1

n− 1

n∑
i=1

(
Xi −Mn

)2
.

• Vn is an unbiased estimator for the variance, E[Vn] = σ2.
• If Z1, . . . , Zn are i.i.d. Gaussian(0, 1) random variables, then
Y =

∑n
i=1 Z

2
i is a chi-squared random variable with n

degrees-of-freedom, Y ∼ χ2
n.

• If Z is a Gaussian(0, 1) random variable, Y is a chi-squared
random variable with n degrees-of-freedom, and Y and Z
are independent, then W = Z

√
n/Y has a Student’s

t-distribution with n degrees-of-freedom, W ∼ Tn.
CDF: FTn (t). PDF: Symmetric about 0.

Confidence Intervals for the Mean
• Let X1, . . . , Xn be i.i.d. random variables with mean µ,

variance σ2, sample mean Mn, and sample variance Vn.
•
[
Mn ± ε

]
is a confidence interval for the mean with

confidence level 1− α if P[µ− ε ≤Mn ≤ µ+ ε] = 1− α.



Confidence Interval: Known Variance

• When to use: Variance is known or n > 30 samples.
• Set ε = σQ−1(α/2)/

√
n

• If the variance σ2 is unknown and we have n > 30 samples,
substitute σ2 with the sample variance Vn.

• Q−1(0.05) = 1.64, Q−1(0.025) = 1.96, Q−1(0.005) = 2.57

Confidence Interval: Unknown Variance

• When to use: Variance is unknown and n ≤ 30 samples.
• Set ε = −

√
VnF

−1
Tn−1

(α/2)/
√
n where FTn−1

(t) is the CDF

for a Student’s t-distribution with n− 1 degrees-of-freedom.

Significance Testing
• Only have a probability model for the null hypothesis H0.
• The significance level 0 ≤ α ≤ 1 is used to determine

when to reject the null hypothesis.
• Given a statistic calculated from the dataset, the p-value is

the probability of observing a value at least this extreme
under the null hypothesis.

◦ If p-value < α, then reject the null hypothesis.
◦ If p-value ≥ α, then fail to reject the null hypothesis.

One-Sample Z-Test

• Null Hypothesis: X1, . . . , Xn is i.i.d. Gaussian(µ, σ2).
• When to use: Variance σ2 is known or n > 30 samples.
• Informally, is the mean not equal to µ?

1. Calculate the sample mean Mn.

2. Z-statistic: Z =
√
n(Mn − µ)/σ.

3. p-value = 2Φ(−|Z|).
• If the variance σ2 is unknown and we have n > 30 samples,

substitute σ2 with the sample variance Vn.
• 2Φ(−1.64) = 0.1, 2Φ(−1.96) = 0.05, 2Φ(−2.57) = 0.01

One-Sample T-Test

• Null Hypothesis: X1, . . . , Xn is i.i.d. Gaussian(µ, σ2).
• When to use: Variance σ2 is unknown and n ≤ 30 samples.
• Informally, is the mean not equal to µ?

1. Calculate the sample mean Mn and variance Vn.

2. T-statistic: T =
√
n(Mn − µ)/

√
Vn.

3. p-value = 2FTn−1
(−|T |).

Two-Sample Z-Test

• Null Hypothesis: X1, . . . , Xn1 is i.i.d. Gaussian(µ, σ2
1) and

Y1, . . . , Yn2 is i.i.d. Gaussian(µ, σ2
2).

• When to use: Variances σ2
1 and σ2

2 are known or
min(n1, n2) > 30.

• Informally, do the datasets have the same mean?

1. Calculate the sample means M
(1)
n1 and M

(2)
n2 .

2. Z-statistic: Z =
(
M

(1)
n1 −M

(2)
n2

)/√σ2
1
n1

+
σ2
2
n2

.

3. p-value = 2Φ(−|Z|).
• If the variances σ2

1 , σ
2
2 are unknown and we have

min(n1, n2) > 30 samples, substitute σ2
1 with the sample

variance V
(1)
n1 and σ2

2 with the sample variance V
(2)
n2 .

• 2Φ(−1.64) = 0.1, 2Φ(−1.96) = 0.05, 2Φ(−2.57) = 0.01

Two-Sample T-Test

• Null Hypothesis: X1, . . . , Xn1 is i.i.d. Gaussian(µ, σ2) and
Y1, . . . , Yn2 is i.i.d. Gaussian(µ, σ2). The mean µ is
unknown.

• When to use: (Equal) variance σ2 is unknown and
min(n1, n2) ≤ 30.

• Informally, do the datasets have the same mean?

1. Calculate the sample means M
(1)
n1 ,M

(2)
n2 , sample

variances V
(1)
n1 , V

(2)
n2 , and the pooled sample

variance σ̂2 =
(
(n1−1)V

(1)
n1 +(n2−1)V

(2)
n2

)
/
(
n1+n2−2

)
.

2. T-statistic: T =
(
M

(1)
n1 −M

(2)
n2

)/√
σ̂2
(

1
n1

+ 1
n2

)
.

3. p-value = 2FTn1+n2−2
(−|T |).

10. Machine Learning
• We focused on binary classification where the goal is to

decide between two hypotheses, but we do not have access
to the underlying probability model.

• Instead, we have a dataset with n samples. The ith sample
(Xi, Yi) consists of a feature vector Xi and a label Yi.

• We use this dataset to come up with a classifier D(x),
which is a function that maps any possible observation
vector x into a guess of its label, +1 or −1.

• To make sure we are not overfitting, we split our dataset
into non-overlapping training and test datasets.

• The training set is used to construct our classifier D(x) and
the test set can only be used to evaluate its performance.

• Training Error = fraction misclassified training examples.
• Test Error = fraction misclassified test examples.
• The closest average classifier computes the sample mean

vectors µ̂
+

and µ̂− for each label. Given input x, it

computes the distances to µ̂
+

and µ̂− and chooses the label

with the smallest distance.

Davg(x) =

{
+1, ‖x− µ̂

+
‖ ≤ ‖x− µ̂−‖,

−1, otherwise

• The nearest neighbor classifier outputs the label of the
closest training example as its guess.

DNN(x) = Ytrain,iclosest iclosest = arg min
i=1,...,ntrain

‖x−Xtrain,i‖

• The LDA classifier assumes the observation vectors are
Gaussian vectors, with different mean vectors µ̂

+
and µ̂−

and the same covariance matrix Σ̂.

DLDA(x) =

{
+1 2 (µ̂

+
− µ̂−)TΣ̂−1x ≥ µ̂T

+
Σ̂−1µ̂

+
− µ̂T−Σ̂−1µ̂−,

−1 otherwise.

• The QDA classifier assumes the observation vectors are
Gaussian vectors, with different mean vectors µ̂

+
and µ̂−

and the covariance matrices Σ̂+ and Σ̂−.
• To avoid overfitting, we can use PCA to perform

dimensionality reduction: XT
reduced = (XT − µ̂T

train
)Vk

where the columns of Vk are the k eigenvectors of Σ̂train

corresponding to the largest k eigenvalues.

11. Markov Chains
• A Markov chain is a sequence of discrete random variables
X0, X1, X2, . . . such that, given the history X0, . . . , Xn, the
next state Xn+1 only depends on the current state Xn,

PXn+1|Xn,...,X0
(xn+1|xn, . . . , x0) = PXn+1|Xn

(xn+1|xn)

• We assume the range is finite RX = {1, . . . ,K}.
• The transition probabilities Pjk are the probabilities of

moving from state j to state k in one time step. We assume
the Markov chain is homogeneous, PXn+1|Xn

(k|j) = Pjk.

• The n-step transition probabilities Pjk(n) are the
probabilities of moving from state j to state k in exactly n
time steps, Pjk(n+m) =

∑K
i=1 Pji(n)Pik(m).

• The state transition matrix is P =

P11 · · · P1K

...
. . .

...
PK1 · · · PKK


• Row index is for current state, column index for next state.

• The probability state vector is p
t

=

 PXt (1)
...

PXt (K)

.

• Moving forward one time step: p
t+1

= PTp
t
.

• Moving forward n time steps: p
t+n

= (Pn)Tp
t
.

State Classification
• State k is accessible from state j if it is possible to reach

state k starting from state j in zero or more time steps.
Notation: j → k (State j is always accessible from itself.)

• States j and k communicate if j → k and k → j.
Notation: j ↔ k. (State j always communicates with itself.)

• A communicating class C is a subset of states such that if
j ∈ C, then k ∈ C if and only if j ↔ k.

• A Markov chain is irreducible if all of its states belong to a
single communicating class.

• A communicating class C is transient if there are states
j ∈ C and k /∈ C such that j → k but k 9 j.

• A communicating class that is not transient is recurrent.
• The period d of a state j is the greatest common divisor of

the length of all cycles from j back to itself.
• All states in a communicating class have the same period.
• If the period is 1, then the state is called aperiodic. A

Markov chain is aperiodic if all its states are aperiodic.

Limiting Probability State Vector
• For an irreducible, aperiodic Markov chain, there is a

unique limiting state probability vector π = lim
t→∞

p
t

satisfying the following properties:

◦ Normalization:
∑K
j=1 πj = 1

◦ Any initial state p
0

will converge to π.

◦ Steady-State Distribution: π = PTπ.

• When π exists, we can solve for it using linear equations
from π = PTπ and

∑K
j=1 πj = 1.

• If there is only one recurrent communicating class and it is
aperiodic, then there is still a unique limiting state
probability vector. Find by first setting πj for all transient
states to 0.
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