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Exam 2 Solutions

Problem 1 16 points

Let X be a continuous random variable with the PDF fX(x) = 1
2e

−|x+1| called the double exponential or
Laplace distribution. The range of X is R , i.e., the set of all real numbers.

(a) (4 pts) Compute E[X] . Your answer can be an integral, but you can also exploit symmetry to get an
exact expression.

Solution: E[X] = −1.

Method 1 using symmetry: The PDF fX(x) is symmetric around −1 : fX(−1 + t) = fX(−1− t) for
all t . Thus, E[X] = −1.

Method 2 using integrals: E[X] =
∫∞
−∞ xfX(x)dx =

∫∞
−∞

xe−|x+1|

2 dx = −1

(b) (4 pts) Let A = {X > 0} . Compute expressions of P[X ∈ A] and the conditional PDF fX|A(x)
(as a case-by-case formula). The answers are simple expressions, but they can be left in terms of
integrals.

Solution: P[A] = 1
2e , fX|A(x) = PDF of an Exponential(1) RV.

P[A] =

∫ ∞

0
fX(x)dx =

∫ ∞

0

1
2e

−|x+1|dx =

∫ ∞

0

1
2e

−(x+1)dx = e−1

2

∫ ∞

0
e−xdx = e−1

2 = 1
2e

fX|A(x) =

{
fX(x)
P[X∈A] x ∈ A

0 otherwise
=

{
ee−|x+1| x > 0

0 otherwise
=

{
ee−(x+1) x > 0

0 otherwise
=

{
e−x x > 0

0 otherwise

Observe that the conditional PDF of X when given that X > 0 , is that of an Exponential(1) RV.

(c) (4 pts) Compute P[X < 2|X > 0] . The answer is a simple expression, but it can be left in terms of
integrals.

Solution: 1− e−2

Method 1 using conditional probability definition:

P[X < 2|X > 0] = P[0<X<2]
P[X>0] =

∫ 2
0 0.5e−|x+1|dx∫∞
0 0.5e−|x+1|dx

=
∫ 2
0 0.5e−(x+1)dx∫∞
0 0.5e−(x+1)dx

=
∫ 2
0 e−xdx∫∞
0 e−xdx

= 1−e−2

1−0 = 1− e−2

Method 2 using conditional PDF from part (b)
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P[X < 2|X > 0] = P[X < 2|X ∈ A] =

∫ 2

−∞
fX|A(x)dx =

∫ 2

0
e−xdx = 1− e−2

Method 3 using properties of Exponential RVs: Since the PDF of X given X > 0 is that of an
Exponential(1) RV, P[X < 2|X > 0] = 1− e−2 .

(d) (4 pts) Compute E[X|X > 0] . The answer is a simple expression, but it can be left in terms of
integrals.

Solution: 1

Method 1 using conditional expectation definition:

E[X|X > 0] = E[X|X ∈ A] =

∫ ∞

−∞
xfX|A(x)dx =

∫ ∞

0
xe−xdx = 1

Method 2 using properties of Exponential RVs: Since the PDF of X given X > 0 is that of an
Exponential(1) RV, E[X|X > 0] = 1 .

Problem 2 16 points

Consider the pair of discrete random variables X,Y with joint PMF described below:

y
PX,Y (x, y) −1 0 1 2

x
1 1/12 1/12 1/12 1/12
2 0 1/6 1/6 0
3 1/6 0 0 1/6

(a) (4 pts) Compute P[XY > 1] .

Solution: P[XY > 1] = 5/12

From the table, there are three non-zero entries with XY > 1 : they are (1,2), (2,1) and (3,2). Their
probabilities are 1/12, 1/6, and 1/6, so P[XY > 1] = 5/12 .

(b) (4 pts) Compute E[X] and E[Y ] .

Solution: E[X] = 2,E[Y ] = 0.5

First, compute the marginal PMFs PX(x) and PY (y) by summing along the rows and columns,
respectively. This shows that

PX(1) = PX(2) = PX(3) = 1/3 ⇒ X ∼ Uniform(1, 3) ⇒ E[X] = (1 + 3)/2 = 2 .

PY (−1) = PY (0) = PY (1) = PY (2) = 1/4 ⇒ Y ∼ Uniform(−1, 2) ⇒ E[Y ] = (−1 + 2)/2 = 0.5 .

(c) (4 pts) Compute Var[Y |X = 3] .
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Solution: Var[Y |X = 3] = 2.25

When X = 3, Y ∼ 3Bernoulli(1/2)− 1 . Since the variance of Bernoulli(1/2) is 1/4, Var[Y |X = 3] =
(3)2 ∗ (1/4) = 9/4 = 2.25 .

(d) (4 pts) Compute ρX,Y .

Solution: ρX,Y = 0

Method 1: Using Cov[X,Y ] = E[XY ]− E[X]E[Y ] , we need E[XY ] . Using the full joint PMF,

E[XY ] =
1(1)(−1) + 1(1)(1) + 1(1)(2) + 2(2)(1) + 2(3)(−1) + 2(3)(2)

12
= 1

Hence Cov[X,Y ] = 1 − (2)(0.5) = 0 and ρX,Y = 0 (you don’t need to know the variances of X and
Y ).

Method 2: Observe that each value of y , PX,Y [0.5 − t, y] = PX,Y [0.5 + t, y] , i.e., the joint PMF
is symmetric with respect to the vertical line x = 0.5 . Therefore X and Y are uncorrelated and
Cov[X, y] = ρX,Y = 0.

Problem 3 16 points

You win a hundred dollars in the lottery! Feeling generous, you first give an amount X ∼ Uniform(0, 100)
of your winnings to one of your friends, and then give an amount Y ∼ Uniform(0, 100–X) to another friend.
Both X and Y are continuous random variables.

(a) (4 pts) Are X and Y independent? Why or why not?

Solution: No. Because the range of Y given X = x is 100− x which depends on the value of x .

(b) (4 pts) Compute the joint PDF fX,Y (x, y) and clearly state its range.

Solution:

fX(x) =

{
1

100 0 ≤ x ≤ 100

0 otherwise
, fY |X(y|x) =

{
1

100−x 0 ≤ y ≤ 100− x

0 otherwise

⇒ fX,Y (x, y) = fX(x)fY |X(y|x) =

{
1

100(100−x) 0 ≤ x ≤ 100, 0 ≤ y ≤ 100− x

0 otherwise

Range RX,Y = {(x, y) : 0 ≤ x ≤ 100, 0 ≤ y ≤ 100− x} .

(c) (4 pts) Compute E[Y |X = 20] . For full credit, you must provide an exact numerical value.
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Solution: E[Y |X = 20] = 40

Y |X = 20 ∼ Uniform(0, 100− 20) ⇒ E[Y |X = 20] = 0+(100−20)
2 = 40 .

(d) (4 pts) Compute E[Y ] . For full credit, you must provide an exact numerical value.

Solution: E[Y ] = 25

E[X] = 0+100
2 = 50 .

Y |X = x ∼ Uniform(0, 100− x) ⇒ E[Y |X] = 0+(100−X)
2 = 50− X

2 .

By the law of total probability, E[Y ] = E[E[Y |X]] = E[50− 0.5X] = 50− 0.5E[X] = 50− 25 = 25 .

Problem 4 16 points

Let X1 and X2 be independent standard Gaussian (zero mean, unit variance) RVs and

[
Y1
Y2

]
︸︷︷︸
Y

=

[
1 1
1 −1

]
︸ ︷︷ ︸

A

[
X1

X2

]
︸ ︷︷ ︸

X

.

(a) (4 pts) Compute exact numerical values of the 2×1 mean vector µY = E[Y ] and the 2×2 covariance
matrix ΣY = Cov[Y ] .

Solution: µY =

[
0
0

]
,ΣY =

[
2 0
0 2

]
Since X1, X2 are independent standard Gaussian RVs,

µX =

[
0
0

]
= 0, the 2 x 1 zero vector and ΣX =

[
1 0
0 1

]
= I2, the 2 x 2 identity matrix

Therefore,

µY = A µX = A 0 =

[
0
0

]
, and ΣY = AΣXA⊤ = AI2A

⊤ = AA⊤ =

[
1 1
1 −1

] [
1 1
1 −1

]
=

[
2 0
0 2

]

(b) (4 pts) Compute E[Y1|X1] as a function of the RV X1 .

Solution: E[Y1|X1] = X1

Method 1: Since X1, X2 are independent standard Gaussian RVs, E[Y1|X1] = E[X1 + X2|X1] =
E[X1|X1] + E[X2|X1] = X1 + E[X2] = X1 + 0 = X1 .

Method 2: First note that since X1, X2 are independent standard Gaussian RVs, they are uncorrelated
and have unit variance, i.e., Cov[X1, X2] = 0 and Var[X1] = Cov[X1, X1] = 1 = Var[X2] .

Since Y1 = X1 +X2 and X1 = X1 + 0 ×X2 are linear functions of independent standard Gaussian
RVs X1, X2 , it follows that X1, Y1 are jointly Gaussian and therefore Y1|X1 = x1 is a Gaussian RV
with mean given by
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E[Y1|X1 = x1] = µY1 +
Cov[Y1,X1]
Var[Y1]

(x1−µX1) = 0+ Cov[X1+X2,X1]
2 (x1−0) = Cov[X1,X1]+Cov[X2,X1]

2 x1 =
x1
2 .

Therefore, E[Y1|X1] = X1/2.

(c) (4 pts) Compute P[Y1 ≤ b|X1 = a] in terms of a , b and the standard Gaussian CDF Φ(·) .

Solution: P[Y1 ≤ b|X1 = a] = Φ(b− 0.5a)

From solution method 2 of part (b), Y1|X1 = a is a Gaussian RV with mean E[Y1|X1 = a] = 0.5a .
We also have

Var[Y1|X1 = a] = Var[Y1]−
(Cov[Y1, X1])

2

Var[X1]
= 2− 12

1
= 1.

Therefore P[Y1 ≤ b|X1 = a] = Φ

(
b−E[Y1|X1=a]√
Var[Y1|X1=a]

)
= Φ

(
b−0.5a√

1

)
= Φ(b− 0.5a) .

(d) (4 pts) Compute the exact numerical value of E[Y 2
1 Y

2
2 ] .

Solution: E[Y 2
1 Y

2
2 ] = 4 Since Y1, Y2 are linear functions of independent standard Gaussian RVs

X1, X2 , they are jointly Gaussian. From part (a), Cov[Y1, Y2] = 0 ⇒ Y1, Y2 are uncorrelated and since
they are jointly Gaussian, they are independent RVs. Moreover, from part (a) E[Y1] = E[Y2] = 0 and
therefore E[Y 2

1 ] = Var[Y1] = 2 = Var[Y2] = E[Y 2
2 ] . Therefore, E[Y 2

1 Y
2
2 ] = E[Y 2

1 ]E[Y 2
2 ] = 2× 2 = 4 .

Problem 5 16 points

The table below depicts four jointly Gaussian PDFs via contour plots. In each case, the expectations,
variances, and covariances are small integer values between −4 and 4 . Put a checkmark in the boxes in
each column that you think are true for that contour plot. No justifications are needed and there may be
multiple boxes checked per row and/or column.

6 5 4 3 2 1 0 1 2 3 4 5 6
x

6
5
4
3
2
1
0
1
2
3
4
5
6

y

A

6 5 4 3 2 1 0 1 2 3 4 5 6
x

6
5
4
3
2
1
0
1
2
3
4
5
6

y

B
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6 5 4 3 2 1 0 1 2 3 4 5 6
x

6
5
4
3
2
1
0
1
2
3
4
5
6

y

C

6 5 4 3 2 1 0 1 2 3 4 5 6
x

6
5
4
3
2
1
0
1
2
3
4
5
6

y

D

E[Y ] > E[X] Var[Y ] > Var[X] P[ Y > |X| ] > 1

2
ρX,Y > 0

A

B

C

D

Solution:

The actual distributions are all jointly Gaussian, with the following parameters:

E[X] E[Y ] Var[X] Var[Y ] Cov[X,Y ]
A -1 3 5 1 -1
B 2 -2 3 5 2
C 2 2 4 4 3
D 0 3 2 4 0

Note that the event {Y > |X|} = {X ≥ 0, Y > X} ∪ {X < 0, Y > −X} = {(X,Y ) ∈ A} where A is the
V-shaped triangular region above the red curve y = |x| shown in the figure below.
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x

y

A

E[Y ] > E[X] Var[Y ] > Var[X] P[ Y > |X| ] > 1

2
ρX,Y > 0

A ✓ ✓

B ✓ ✓

C ✓

D ✓ ✓ ✓

Problem 6 8 points

Complete the following quick calculations. For full credit, you must work out a simplified, numerical answer
for each requested quantity in this problem. The solutions do not require integration.

(a) (2pts) Let X be a standard Gaussian RV. Compute P [ |X| > 1|X < 2 ] in terms of the standard
Gaussian CDF Φ(·) .

Solution: P [ |X| > 1|X < 2 ] = ϕ(−1)+ϕ(2)−ϕ(1)
ϕ(2)

P [ |X| > 1|X < 2 ] =
P [ {|X| > 1} ∩ {X < 2} ]

P [X < 2 ]
=

P [ {X < −1} ] + P [{X < 2} ]− P [{X < 1} ]
P [X < 2 ]

=
ϕ(−1) + ϕ(2)− ϕ(1)

ϕ(2)
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(b) (2pts) Let X be a continuous Uniform(−1, 1) RV. Compute E[X|X2 > 0.25] .

Solution: E[X|X2 > 0.25] = 0

The PDF of X conditioned on the event A = {X2 > 0.25} = {−1 ≤ X < −0.5} ∪ {0.5 < X ≤ 1} , is
uniform over [−1,−0.5) ∪ (0.5, 1] which is symmetric about 0 . Thus, E[X|X2 > 0.25] = 0 .

(c) (2pts) Let X be continuous Uniform(−1, 1) RV and let RV Y given X = x be Exponential
(

1
1+x2

)
.

Compute E[Y ] .

Solution: E[Y ] = 4/3 ≈ 1.33

First note that since X is a continuous Uniform(−1, 1) RV, E[X] = −1+1
2 = 0 and therefore E[X2] =

Var[X] = (1−(−1))2

12 = 4
12 = 1

3 .

Next, since Y given X = x is an Exponential
(

1
1+x2

)
RV, E[Y |X = x] = 1

1
1+x2

= 1 + x2 . Thus,

E[Y |X] = 1 +X2 .

Finally, by the law of total expectation, E[Y ] = E[E[Y |X]] = E[1 +X2] = 1 + 1
3 = 4/3 ≈ 1.33 .

(d) (2pts) Compute E[(X+Y )2] if X is Exponential(1) , Y a standard Gaussian, and ρX,Y = −0.5 .

Solution: E[(X + Y )2] = 2

Since X be Exponential(1) , we have µX = 1
1 = 1 and Var[X] = 1

12
= 1 ⇒ E[X2] = Var[X]+µ2

X = 2.

Since Y a standard Gaussian, we have µY = 0 and Var[Y ] = 1 = E[Y 2] .

We also have Cov[X,Y ] = ρX,Y

√
Var[X]

√
Var[Y ] = −0.5 × 1 × 1 = −0.5 . Therefore, E[XY ] =

Cov[X,Y ] + µXµY = Cov[X,Y ] = −0.5

Finally, E[(X + Y )2] = E[X2] + E[Y 2] + 2E[XY ] = 2 + 1 + 2(−0.5) = 2 + 1− 1 = 2 .

Problem 7 8 points

For each of the following parts, indicate whether the statement is always true or it can be false by clearly
writing T (for True) or F (for False) in the box next to the question. Full credit will be given for
selecting the correct logical value (even with no explanation). Briefly explain your reasoning in the space
provided for partial credit. Diagrams are welcome.

(a) (2pts) If X is a continuous uniform RV with E[X] = 1 and Var[X] = 1
3 , then P[X < 0] = 0 .

Solution: True Let X be Uniform(a, b) . Then (a+b)/2 = 1 ⇒ (a+b) = 2 and (b−a)2/12 = 1/3 ⇒
(b− a) = 2 . This implies that a = 0 and b = 2 and the range of X is [0, 2] . Thus, P[X < 0] = 0 .

(b) (2pts) If X is a continuous Uniform(0, 3) RV, then Y = X2 is a continuous Uniform(0, 9)
RV.
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Solution: False P[Y ≤ 1] = P[X ≤ 1] = 1/3 . If Y was a continuous Uniform(0, 9) RV, then
P[Y ≤ 1] = 1/9 .

(c) (2pts) If Var[X] = 0.01 and Var[Y ] = 0.04 then Cov[X,Y ] can be 0.03 .

Solution: False For the given values, ρX,Y = Cov[X,Y ]√
Var[X]Var[Y ]

= 0.03√
0.01×0.04

= 0.03
0.1×0.2 = 1.5 which is

impossible, since |ρX,Y | ≤ 1 .

(d) (2pts) If Var[−2X + 3Y ] = 4Var[X] + 9Var[Y ] , then Var[X − 2Y ] = Var[X] + 4Var[Y ] .

Solution: True Var[aX + bY ] = a2Var[X] + b2Var[Y ] + 2abCov[X,Y ] . So if Var[−2X + 3Y ] =
4Var[X] + 9Var[Y ] then Cov[X,Y ] = 0 and therefore Var[X − 2Y ] = Var[X] + 4Var[Y ] .

Problem 8 4 points

X and Y are RVs with means E[X] = E[Y ] = 0 , second moments E[X2] = E[Y 2] = 1 , and E[XY ] = 0.5 .
We want to estimate Y using a linear function of X given by

Ŷ = uX + v

where u and v are constants to be designed. Compute the values of u and v which would make the mean
squared error given by

g(u, v) = E[(Ŷ − Y )2].

as small as possible, i.e., we want to minimize g(u, v) with respect to variables u and v .
Useful algebraic identity: (a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2bc+ 2ca .

Solution: u = 0.5, v = 0

g(u, v) = E[(uX + v − Y )2]

= u2E[X2] + v2 + E[Y 2] + 2uvE[X]− 2vE[Y ]− 2uE[XY ]

= u2 + v2 + 1− u

= (u− 0.5)2 + v2 + 0.75

Thus, g(u, v) is minimized if u = 0.5 and v = 0 and the minimum mean squared error is 0.75 .
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