1. Foundations of Probability

Set Theory

• A set is a collection of elements.

- We usually use capital letters (such as A) to refer to sets and lowercase letters (such as x) to refer to elements.
- $x \in A$ means "x is an element of the set A."
- $x \notin A$ means "x is not an element of the set A."
- The empty set or null set is the set with no elements. Notation: ϕ or $\{ \}$.
- The universal set Ω is the set of all elements (for the specific context).
- A subset A of a set B is a set consisting of some (or none or all) of the elements of B. Notation: $A \subset B$.
- Two sets A and B are equal if and only if $A \subset B$ and $B \subset A$.

Set Operations

- Complement: $A^{c} = \{x : x \notin A\}.$
- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}.$
- Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}.$
- Set Difference: $A B = \{x : x \in A \text{ and } x \notin B\}$

Other Set Concepts

- A collection of sets A_1, \ldots, A_n is mutually exclusive if $A_i \cap A_j = \phi$ for $i \neq j$.
- A collection of sets A_1, \ldots, A_n is collectively exhaustive if $A_1 \cup \cdots \cup A_n = \Omega.$
- A collection of sets A_1, \ldots, A_n is a partition if it is both mutually exclusive and collectively exhaustive.

De Morgan's Laws

$$(A \cup B)^{\mathsf{c}} = A^{\mathsf{c}} \cap B^{\mathsf{c}} \qquad \left(\bigcup_{i=1}^{n} A_{i}\right)^{\mathsf{c}} = \bigcap_{i=1}^{n} A_{i}^{\mathsf{c}}$$
$$(A \cap B)^{\mathsf{c}} = A^{\mathsf{c}} \cup B^{\mathsf{c}} \qquad \left(\bigcap_{i=1}^{n} A_{i}\right)^{\mathsf{c}} = \bigcup_{i=1}^{n} A_{i}^{\mathsf{c}}$$

Probability Axioms

- An experiment is a procedure that generates observable outcomes.
- An outcome is a possible observation of an experiment.
- The sample space Ω is the set of all possible outcomes.
- An event is a subset of Ω: it is a set of possible outcomes.
- A probability measure $\mathbb{P}[\cdot]$ is a function that maps events to real numbers. It must satisfy the following axioms:
 - 1. Non-negativity: For any event A, $\mathbb{P}[A] \ge 0$.
 - 2. Normalization: $\mathbb{P}[\Omega] = 1$.
 - 3. Additivity: For any countable collective A_1, A_2, \ldots of mutually exclusive events,

$$\mathbb{P}[A_1 \cup A_2 \cup \cdots] = \mathbb{P}[A_1] + \mathbb{P}[A_2] + \cdots$$

• These axioms imply the following properties:

• Complement: $\mathbb{P}[A^{\mathsf{c}}] = 1 - \mathbb{P}[A]$.

• Inclusion-Exclusion: $\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \cap B]$.

Conditional Probability

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$$

- For $\mathbb{P}[B] = 0$, $\mathbb{P}[A|B]$ is undefined.
- Conditional probability satisfies the probability axioms:
 - Non-negativity: For any event A, $\mathbb{P}[A|B] \ge 0$.
 - Normalization: $\mathbb{P}[\Omega|B] = 1$.
 - Additivity: For any countable collective A_1, A_2, \ldots of mutually exclusive events,

 $\mathbb{P}[A_1 \cup A_2 \cup \cdots | B] = \mathbb{P}[A_1 | B] + \mathbb{P}[A_2 | B] + \cdots$

• Multiplication Rule: For two events A and B, $\mathbb{P}[A \cap B] = \mathbb{P}[A] \mathbb{P}[B|A] = \mathbb{P}[B] \mathbb{P}[A|B].$ For *n* events A_1, A_2, \ldots, A_n ,

$$\mathbb{P}\left[\bigcap_{i=1}^{n} A_{i}\right] = \mathbb{P}[A_{1}]\mathbb{P}[A_{2}|A_{1}]\cdots\mathbb{P}[A_{n}|A_{1}\cap\cdots\cap A_{n-1}]$$

• Law of Total Probability: For a partition B_1, \ldots, B_n satisfying $\mathbb{P}[B_i] > 0$ for all i,

$$\mathbb{P}[A] = \sum_{i=1}^{n} \mathbb{P}[A|B_i]\mathbb{P}[B_i]$$

• Bayes' Rule: This is a method to "flip" conditioning:

$$\mathbb{P}[B|A] = \frac{\mathbb{P}[A|B] \mathbb{P}[B]}{\mathbb{P}[A]} .$$

Sometimes, it is useful to solve for the denominator using the total probability theorem. For a partition B_1, \ldots, B_n satisfying $\mathbb{P}[B_i] > 0$ for all i,

$$\mathbb{P}[B_j|A] = \frac{\mathbb{P}[A|B_j]\mathbb{P}[B_j]}{\mathbb{P}[A]} = \frac{\mathbb{P}[A|B_j]\mathbb{P}[B_j]}{\sum_{i=1}^n \mathbb{P}[A|B_i]\mathbb{P}[B_i]} .$$

Independence

- Two events A and B are independent if $\mathbb{P}[A \cap B] = \mathbb{P}[A] \mathbb{P}[B].$
- Independence of A and B means that knowing if A occurs cannot help predict whether B also occurs (and vice versa).
- Events A_1, \ldots, A_n are independent if
 - All collections of n-1 events chosen from A_1, \ldots, A_n are independent.

 $\circ \mathbb{P}[A_1 \cap \dots \cap A_n] = \mathbb{P}[A_1] \cdots \mathbb{P}[A_n]$

- Independence means that no subset of the events can be used to help predict the occurrence of any other subset of events.
- If A_1, \ldots, A_n only satisfy $\mathbb{P}[A_i \cap A_j] = \mathbb{P}[A_i]\mathbb{P}[A_j]$ for all $i \neq j$, then we say they are pairwise independent (but not independent).
- If A and B are independent, then so are A and B^{c} , A^{c} and B, and A^{c} and B^{c} .

Conditional Independence

• The conditional probability of event A given that B occurs is • The events A and B are conditionally independent given C if

 $\mathbb{P}[A \cap B|C] = \mathbb{P}[A|C] \mathbb{P}[B|C] \; .$

- Conditional independence means that, given C occurs, knowing that A occurs cannot help predict whether B also occurs (and vice versa).
- Events A_1, \ldots, A_n are conditionally independent given B if
- All collections of n-1 events chosen from A_1, \ldots, A_n are conditionally independent given B.

$$\circ \ \mathbb{P}[A_1 \cap \dots \cap A_n | B] = \mathbb{P}[A_1 | B] \cdots \mathbb{P}[A_n | B]$$

- Independence does not imply conditional independence.
- Conditional independence does not imply independence.

Counting

- If an experiment is composed of m subexperiments and the i^{th} subexperiment consists of n_i outcomes (that can be freely chosen), then the total number of outcomes is $n_1 n_2 \cdots n_m$.
- Counting techniques are especially useful in scenarios where all outcomes are equally likely, since the probability of an event can be expressed as

$$\mathbb{P}[A] = \frac{\# \text{ outcomes in } A}{\# \text{ outcomes in } \Omega}$$

Sampling

- A sampling problem consists of n distinguishable elements with k selections to be made.
- Selections may be made either with or without replacement.
- The final outcome is either order dependent or order independent.

	Order		
	Dependent	Independent	
With Replacement	n^k	$\binom{n+k-1}{k}$	
Without Replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$	

	k									
	$\binom{n}{k}$	0	1	2	3	4	5	6	7	8
n	0	1	-	-	-	-	-	-	-	-
	1	1	1	-	-	-	-	-	-	-
	2	1	2	1	-	-	-	-	-	-
	3	1	3	3	1	-	-	-	-	-
	4	1	4	6	4	1	-	-	-	-
	5	1	5	10	10	5	1	-	-	-
	6	1	6	15	20	15	6	1	-	—
	7	1	7	21	35	35	21	7	1	_
	8	1	8	28	56	70	56	28	8	1
									-	

EK381 Exam 1 Formula Sheet

2. Discrete Random Variables

- A random variable is a mapping that assigns real numbers to outcomes in the sample space.
- Random variables are denoted by capital letters (such as X) and their specific values are denoted by lowercase letters (such as x).
- The range of a random variable X is denoted by R_X .

Probability Mass Function

• The probability mass function (PMF) specifies the probability that a discrete random variable X takes the value x:

 $P_X(x) = \mathbb{P}[X = x].$

• The PMF satisfies the following basic properties:

1. Non-negativity: $P_X(x) > 0$ for all x.

2. Normalization:
$$\sum_{x \in R_X} P_X(x) = 1.$$

3. Additivity: For any event $B \subset R_X$, the probability that X falls in B is

$$\mathbb{P}[\{X \in B\}] = \sum_{x \in B} P_X(x).$$

Cumulative Distribution Function

• The cumulative distribution function (CDF) returns the probability that a random variable X is less than or equal to a value x:

 $F_X(x) = \mathbb{P}[X < x].$

- The CDF satisfies the following basic properties:
 - Normalization: $\lim_{x\to\infty} F_X(x) = 1$.
- Non-negativity: $F_X(x)$ is a non-decreasing function of x. • For $b \ge a$, $F_X(b) - F_X(a) = \mathbb{P}[a < X \le b]$.
- For discrete random variables, $F_X(x)$ is piecewise constant and jumps at points x where $P_X(x) > 0$ by height $P_X(x)$.

Expected Value

• The expected value of a discrete random variable X is

$$\mathbb{E}[X] = \sum_{x \in R_X} x P_X(x)$$

- This is also known as the mean or average.
- Sometimes denoted as $\mu_X = \mathbb{E}[X]$.

Variance

• The variance measures how spread out a random variable is around its mean,

$$\mathsf{Var}[X] = \mathbb{E}\Big[\big(X - \mathbb{E}[X]\big)^2 \Big] = \sum_{x \in R_X} (x - \mu_X)^2 P_X(x).$$

- Alternate formula: $\operatorname{Var}[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$.
- Standard Deviation: σ_X = √Var[X].
 The variance is sometimes written as σ²_X = Var[X].

Functions of a Random Variable

- A function Y = q(X) of a discrete random variable X is itself a discrete random variable.
- Range: $R_Y = \{g(x) : x \in R_X\}.$ • PMF: $P_Y(y) = \sum P_X(x)$. x:q(x)=y
- Expected Value of a Function Y = q(X):

$$\mathbb{E}[g(X)] = \mathbb{E}[Y] = \sum_{y \in R_Y} y P_Y(y) = \sum_{x \in R_X} g(x) P_X(x)$$

• Linearity of Expectation:

$$\begin{split} \mathbb{E}[aX+b] &= a \, \mathbb{E}[X] + b \\ \mathbb{E}[g(X)+h(Y)] &= \mathbb{E}[g(X)] + \mathbb{E}[h(Y) \end{split}$$

• Variance of a Linear Function:

$$\mathsf{Var}[aX+b] = a^2 \,\mathsf{Var}[X]$$

Important Families of Discrete RVs Bernoulli Random Variables

• X is a Bernoulli(p) random variable if it has PMF

$$P_X(x) = \begin{cases} 1 - p & x = 0, \\ p & x = 1 \end{cases}$$

- Range: $R_X = \{0, 1\}.$
- Expected Value: $\mathbb{E}[X] = p$.
- Variance: Var[X] = p(1-p).
- Interpretation: single trial with success probability p.

Geometric Random Variables

• X is a Geometric(p) random variable if it has PMF

$$P_X(x) = \begin{cases} p(1-p)^{x-1} & x = 1, 2, \dots, \\ 0 & \text{otherwise.} \end{cases}$$

- Range: $R_X = \{1, 2, \ldots\}.$
- Expected Value: $\mathbb{E}[X] = \frac{1}{p}$ • Variance: $\operatorname{Var}[X] = \frac{1-p}{p^2}$.
- Interpretation: # of independent Bernoulli(p) trials until
- first success.

Binomial Random Variables

• X is a Binomial(n, p) random variable if it has PMF

$$P_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x = 0, 1, \dots, n, \\ 0 & \text{otherwise.} \end{cases}$$

- Range: $R_X = \{0, 1, \dots, n\}.$
- Expected Value: $\mathbb{E}[X] = np$.
- Variance: Var[X] = np(1-p).
- Interpretation: # of successes in n independent Bernoulli(p)trials

Discrete Uniform Random Variables

• X is a Discrete Uniform(a, b) random variable if it has PMF

$$P_X(x) = \begin{cases} \frac{1}{b-a+1} & x = a, a+1, \dots, b\\ 0 & \text{otherwise.} \end{cases}$$

• Range: $R_X = \{a, a + 1, \dots, b\}.$

• Expected Value:
$$\mathbb{E}[X] = \frac{a+b}{2}$$
.

• Variance:
$$\operatorname{Var}[X] = \frac{(b-a)(b-a+2)}{12} = \frac{(b-a+1)^2 - 1}{12}.$$

• Interpretation: equally likely to take any (integer) value between a and b.

Poisson Random Variables

• X is a Poisson(λ) random variable if it has PMF

$$P_X(x) = \begin{cases} \frac{\lambda^x}{x!} e^{-\lambda} & x = 0, 1, \dots \\ 0 & \text{otherwise.} \end{cases}$$

- Range: $R_X = \{0, 1, \ldots\}.$
- Expected Value: $\mathbb{E}[X] = \lambda$.
- Variance: $Var[X] = \lambda$.

١

• Interpretation: # of arrivals in a fixed time window.

Conditioning for Discrete Random Variables

• The conditional PMF of X given an event B is

$$P_{X|B}(x) = \begin{cases} \frac{P_X(x)}{\mathbb{P}[\{X \in B\}]} & x \in B\\ 0 & x \notin B \end{cases}$$

where
$$\mathbb{P}[\{X \in B\}] = \sum_{x \in B} P_X(x).$$

- The conditional PMF satisfies the basic PMF properties
 - 1. Non-negativity: $P_{X|B}(x) \ge 0$ for all x.

2. Normalization:
$$\sum_{x \in B} P_{X|B}(x) = 1.$$

3. Additivity: For any event $C \subset R_X$, the conditional probability that X falls in C given that X falls in B is

$$\mathbb{P}\big[\{X \in C\} \big| \{X \in B\}\big] = \sum_{x \in C} P_{X|B}(x).$$

• The conditional expected value of X given an event B is

$$\mathbb{E}[X|B] = \sum_{x \in B} x P_{X|B}(x) \; .$$

• The conditional expected value of a function q(X) given an event B is

$$\mathbb{E}\big[g(X)|B\big] = \sum_{x \in B} g(x) P_{X|B}(x) \ .$$

• The conditional variance of X given an event B is

$$\begin{aligned} \mathsf{Var}[X|B] &= \mathbb{E}\Big[\big(X - \mathbb{E}[X|B]\big)^2 \Big| B \Big] = \sum_{x \in B} \big(x - \mathbb{E}[X|B]\big)^2 P_{X|B}(x) \\ &= \mathbb{E}[X^2|B] - \big(\mathbb{E}[X|B])^2 \end{aligned}$$