
EK381 Exam 1 Formula Sheet

1. Foundations of Probability
Set Theory
• A set is a collection of elements.
• We usually use capital letters (such as A) to refer to sets

and lowercase letters (such as x) to refer to elements.
• x ∈ A means “x is an element of the set A.”
• x /∈ A means “x is not an element of the set A.”
• The empty set or null set is the set with no elements.

Notation: φ or { }.
• The universal set Ω is the set of all elements (for the specific

context).
• A subset A of a set B is a set consisting of some (or none or

all) of the elements of B. Notation: A ⊂ B.
• Two sets A and B are equal if and only if A ⊂ B and B ⊂ A.

Set Operations

• Complement: Ac = {x : x /∈ A}.
• Union: A ∪B = {x : x ∈ A or x ∈ B}.
• Intersection: A ∩B = {x : x ∈ A and x ∈ B}.
• Set Difference: A−B = {x : x ∈ A and x /∈ B}.

Other Set Concepts

• A collection of sets A1, . . . , An is mutually exclusive if
Ai ∩Aj = φ for i 6= j.

• A collection of sets A1, . . . , An is collectively exhaustive if
A1 ∪ · · · ∪An = Ω.

• A collection of sets A1, . . . , An is a partition if it is both
mutually exclusive and collectively exhaustive.
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Probability Axioms
• An experiment is a procedure that generates observable

outcomes.
• An outcome is a possible observation of an experiment.
• The sample space Ω is the set of all possible outcomes.
• An event is a subset of Ω: it is a set of possible outcomes.
• A probability measure P[·] is a function that maps events to

real numbers. It must satisfy the following axioms:

1. Non-negativity: For any event A, P[A] ≥ 0.

2. Normalization: P[Ω] = 1.

3. Additivity: For any countable collective A1, A2, . . . of
mutually exclusive events,

P[A1 ∪A2 ∪ · · · ] = P[A1] + P[A2] + · · · .

• These axioms imply the following properties:

◦ Complement: P[Ac] = 1− P[A].
◦ Inclusion-Exclusion: P[A ∪B] = P[A] + P[B]− P[A ∩B].

Conditional Probability
• The conditional probability of event A given that B occurs is

P[A|B] =
P[A ∩B]

P[B]
.

• For P[B] = 0, P[A|B] is undefined.
• Conditional probability satisfies the probability axioms:

◦ Non-negativity: For any event A, P[A|B] ≥ 0.
◦ Normalization: P[Ω|B] = 1.
◦ Additivity: For any countable collective A1, A2, . . . of

mutually exclusive events,

P[A1 ∪A2 ∪ · · · |B] = P[A1|B] + P[A2|B] + · · · .
• Multiplication Rule: For two events A and B,

P[A ∩B] = P[A]P[B|A] = P[B]P[A|B].
For n events A1, A2, . . . , An,

P
[ n⋂
i=1

Ai

]
= P[A1]P[A2|A1] · · · P[An|A1 ∩ · · · ∩ An−1] .

• Law of Total Probability: For a partition B1, . . . , Bn
satisfying P[Bi] > 0 for all i,

P[A] =

n∑
i=1

P[A|Bi]P[Bi] .

• Bayes’ Rule: This is a method to “flip” conditioning:

P[B|A] =
P[A|B]P[B]

P[A]
.

Sometimes, it is useful to solve for the denominator using
the total probability theorem. For a partition B1, . . . , Bn
satisfying P[Bi] > 0 for all i,

P[Bj |A] =
P[A|Bj ]P[Bj ]

P[A]
=

P[A|Bj ]P[Bj ]
n∑
i=1

P[A|Bi]P[Bi]

.

Independence
• Two events A and B are independent if

P[A ∩B] = P[A]P[B].
• Independence of A and B means that knowing if A occurs

cannot help predict whether B also occurs (and vice versa).
• Events A1, . . . , An are independent if

◦ All collections of n− 1 events chosen from A1, . . . , An are
independent.

◦ P[A1 ∩ · · · ∩An] = P[A1] · · ·P[An]

• Independence means that no subset of the events can be
used to help predict the occurrence of any other subset of
events.

• If A1, . . . , An only satisfy P[Ai ∩Aj ] = P[Ai]P[Aj ] for all
i 6= j, then we say they are pairwise independent (but not
independent).

• If A and B are independent, then so are A and Bc, Ac and
B, and Ac and Bc.

Conditional Independence
• The events A and B are conditionally independent given C if

P[A ∩B|C] = P[A|C]P[B|C] .

• Conditional independence means that, given C occurs,
knowing that A occurs cannot help predict whether B also
occurs (and vice versa).

• Events A1, . . . , An are conditionally independent given B if

◦ All collections of n− 1 events chosen from A1, . . . , An are
conditionally independent given B.

◦ P[A1 ∩ · · · ∩An|B] = P[A1|B] · · ·P[An|B]

• Independence does not imply conditional independence.
• Conditional independence does not imply independence.

Counting
• If an experiment is composed of m subexperiments and the
ith subexperiment consists of ni outcomes (that can be
freely chosen), then the total number of outcomes is
n1 n2 · · · nm.

• Counting techniques are especially useful in scenarios where
all outcomes are equally likely, since the probability of an
event can be expressed as

P[A] =
# outcomes in A

# outcomes in Ω

Sampling
• A sampling problem consists of n distinguishable elements

with k selections to be made.

◦ Selections may be made either with or without
replacement.

◦ The final outcome is either order dependent or order
independent.

Order
Dependent Independent

With Replacement nk
(n+ k − 1

k

)
Without Replacement

n!

(n− k)!

(n
k

)
=

n!

k!(n− k)!

k(
n
k

)
0 1 2 3 4 5 6 7 8

0 1 − − − − − − − −

n

1 1 1 − − − − − − −
2 1 2 1 − − − − − −
3 1 3 3 1 − − − − −
4 1 4 6 4 1 − − − −
5 1 5 10 10 5 1 − − −
6 1 6 15 20 15 6 1 − −
7 1 7 21 35 35 21 7 1 −
8 1 8 28 56 70 56 28 8 1



2. Discrete Random Variables
• A random variable is a mapping that assigns real numbers

to outcomes in the sample space.
• Random variables are denoted by capital letters (such as X)

and their specific values are denoted by lowercase letters
(such as x).

• The range of a random variable X is denoted by RX .

Probability Mass Function
• The probability mass function (PMF) specifies the

probability that a discrete random variable X takes the
value x:

PX(x) = P[X = x].

• The PMF satisfies the following basic properties:

1. Non-negativity: PX(x) ≥ 0 for all x.

2. Normalization:
∑
x∈RX

PX(x) = 1.

3. Additivity: For any event B ⊂ RX , the probability
that X falls in B is

P[{X ∈ B}] =
∑
x∈B

PX(x).

Cumulative Distribution Function
• The cumulative distribution function (CDF) returns the

probability that a random variable X is less than or equal to
a value x:

FX(x) = P[X ≤ x].

• The CDF satisfies the following basic properties:

◦ Normalization: limx→∞ FX(x) = 1.
◦ Non-negativity: FX(x) is a non-decreasing function of x.
◦ For b ≥ a, FX(b)− FX(a) = P[a < X ≤ b].

• For discrete random variables, FX(x) is piecewise constant
and jumps at points x where PX(x) > 0 by height PX(x).

Expected Value
• The expected value of a discrete random variable X is

E[X] =
∑
x∈RX

xPX(x).

• This is also known as the mean or average.
• Sometimes denoted as µX = E[X].

Variance
• The variance measures how spread out a random variable is

around its mean,

Var[X] = E
[(
X − E[X]

)2]
=
∑
x∈RX

(x− µX)2PX(x).

• Alternate formula: Var[X] = E[X2]−
(
E[X]

)2
.

• Standard Deviation: σX =
√

Var[X].
• The variance is sometimes written as σ2

X = Var[X].

Functions of a Random Variable
• A function Y = g(X) of a discrete random variable X is

itself a discrete random variable.
• Range: RY = {g(x) : x ∈ RX}.
• PMF: PY (y) =

∑
x:g(x)=y

PX(x).

• Expected Value of a Function Y = g(X):

E[g(X)] = E[Y ] =
∑
y∈RY

y PY (y) =
∑
x∈RX

g(x)PX(x)

• Linearity of Expectation:

E[aX + b] = aE[X] + b

E[g(X) + h(Y )] = E[g(X)] + E[h(Y )]

• Variance of a Linear Function:

Var[aX + b] = a2 Var[X]

Important Families of Discrete RVs

Bernoulli Random Variables

• X is a Bernoulli(p) random variable if it has PMF

PX(x) =

{
1− p x = 0,

p x = 1 .

• Range: RX = {0, 1}.
• Expected Value: E[X] = p.
• Variance: Var[X] = p(1− p).
• Interpretation: single trial with success probability p.

Geometric Random Variables

• X is a Geometric(p) random variable if it has PMF

PX(x) =

{
p(1− p)x−1 x = 1, 2, . . . ,

0 otherwise.

• Range: RX = {1, 2, . . .}.

• Expected Value: E[X] =
1

p
.

• Variance: Var[X] =
1− p
p2

.

• Interpretation: # of independent Bernoulli(p) trials until
first success.

Binomial Random Variables

• X is a Binomial(n, p) random variable if it has PMF

PX(x) =

{(n
x

)
px(1− p)n−x x = 0, 1, . . . , n,

0 otherwise.

• Range: RX = {0, 1, . . . , n}.
• Expected Value: E[X] = np.
• Variance: Var[X] = np(1− p).
• Interpretation: # of successes in n independent Bernoulli(p)

trials.

Discrete Uniform Random Variables

• X is a Discrete Uniform(a, b) random variable if it has PMF

PX(x) =


1

b− a+ 1
x = a, a+ 1, . . . , b,

0 otherwise.

• Range: RX = {a, a+ 1, . . . , b}.

• Expected Value: E[X] =
a+ b

2
.

• Variance: Var[X] =
(b− a)(b− a+ 2)

12
=

(b− a+ 1)2 − 1

12
.

• Interpretation: equally likely to take any (integer) value
between a and b.

Poisson Random Variables

• X is a Poisson(λ) random variable if it has PMF

PX(x) =


λx

x!
e−λ x = 0, 1, . . .

0 otherwise.

• Range: RX = {0, 1, . . .}.
• Expected Value: E[X] = λ.
• Variance: Var[X] = λ.
• Interpretation: # of arrivals in a fixed time window.

Conditioning for Discrete Random Variables
• The conditional PMF of X given an event B is

PX|B(x) =


PX(x)

P[{X ∈ B}]
x ∈ B

0 x /∈ B

where P[{X ∈ B}] =
∑
x∈B

PX(x).

• The conditional PMF satisfies the basic PMF properties

1. Non-negativity: PX|B(x) ≥ 0 for all x.

2. Normalization:
∑
x∈B

PX|B(x) = 1.

3. Additivity: For any event C ⊂ RX , the conditional
probability that X falls in C given that X falls in B is

P
[
{X ∈ C}

∣∣{X ∈ B}] =
∑
x∈C

PX|B(x).

• The conditional expected value of X given an event B is

E[X|B] =
∑
x∈B

xPX|B(x) .

• The conditional expected value of a function g(X) given an
event B is

E
[
g(X)|B

]
=
∑
x∈B

g(x)PX|B(x) .

• The conditional variance of X given an event B is

Var
[
X|B

]
= E

[(
X − E[X|B]

)2∣∣∣B] =
∑
x∈B

(
x− E[X|B]

)2
PX|B(x)

= E
[
X2|B]−

(
E[X|B])2
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