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Chapter 1

Foundations of Probability

1.1 Introduction

What is probability theory? It is an azxiomatic theory which describes and predicts the outcomes of inexact,
repeated experiments. Note the emphases in the above definition. The basis of probabilistic analysis is to
determine or estimate the probabilities that certain known events occur, and then to use the axioms of
probability theory to derive probabilities of other events of interest, and to predict the outcomes of certain
experiments.

For example, consider any card game. The inexact experiment is the shuffling of a deck of cards, with
the outcome being the order in which the cards appear. An estimate of the underlying probabilities would
be that all orderings are equally likely; an event might be a collection of outcomes, such as all the outcomes
where the ace of spades is the first card. The underlying events would then be assigned a given probability.

Based on the underlying probability of the events, you may wish to compute the probability that, if you
are playing alone against a dealer, you would win a hand of blackjack. Certain orderings of the cards lead
to winning hands, and the probability of winning can be computed from the combined information on the
orderings.

While card games and other games of chance make fun illustrations for applications of probability, we
are interested in using probability for engineering problems. Why do we use probability in such problems?
First, we use probability to model phenomena whose outcomes are too hard to model because they involve
too many microscopic factors. For instance, the temperature in a room is the result of kinetic energy events
released from particle collisions, but modeling those events by representing trajectories of molecules in a room
requires very large scale computations. Instead, we can use a probabilistic description of those collisions that
forms the basis for thermodynamics.

A different reason we use probability in engineering is to model lack of precision in measurement. No
measurement instrument is exact, and all measurements incur some degree of error. We use probability for
representing the errors in what we measure versus the actual measured value. For instance, data received
over communications channels are subject to unknown distortions whose effect is captured using probability
models. A third reason to use probability in engineering problems arises in representing physical phenomena
at atomic levels, in modern physics and quantum mechanics. Heisenberg’s famous uncertainty principle uses
probability to describe fundamental limits in knowing both the position and momentum of atomic particles.

Below is a brief list of examples of how probability models are used in different fields of engineering and
science:

e Game Theory: We model outcomes of games of chance, such as cards, rolls of dice, landing of roulette
balls, etc. We use those models to derive superior playing strategies that maximize our odds of winning,.

e Weather: the evolution of weather fronts over time is subject to many unknown variations, so weather
prediction uses probability to estimate likely weather patterns, including predicting hurricane trajec-
tories and strenghts.

e Finance: Probability models are the foundation for mathematical finance, to represent the uncertain
evolution of stock prices over time.
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e Physics: probability is used to represent possible locations for electrons in orbits, and in statistical
mechanics to represent macroscopic effects of numerous molecular motions.

e Molecular Biology: potential DNA mutations of a virus are represented using probability models.

e Science and Engineering Measurements: errors are represented using probability models. Max Born
made the observation measured values are within a factor from true values. To quote Max Born, one of
the pioneers of quantum mechanics, ” The conception of chance enters in the very first steps of scientific
activity in virtue of the fact that no observation is absolutely correct.”

e Circuits: The true resistance, capacitance and inductance of circuit elements is variable, and these
variations are often modeled using probability.

e Optics: The actual number of photons per unit time emitted by a source of given intensity is random,
and modeled using probability.

e Transportation: The travel time on roads, the routes selected by traffic, and the wait times at inter-
sections and toll booths are represented using probability models to predict traffic flow.

e Manufacturing: Production times of parts, demand for products, variations in supply chain deliveries
are effects that are often modeled by probability.

e Robotics: Problems in determining robot position from sensor data are estimation problems solved
using the theory of probability

e Medicine: Problems in diagnosis based on observed patient data are fundamental hypothesis testing
problems best addressed using probability.
item Nuclear Engineering: Failure analysis and diagnosis is based on probabilistic reasoning.

e Astronomy: Detecting and tracking the location of celestial objects using different instruments is based
on the theory of probability.

e Data Science: The foundations of data science are the probabilistic theories of estimation and classifi-
cation.

As the above list indicates, Probability Theory is useful across a wide range of engineering applications.

What do we mean by the probability of an event? This foundational question has been the focus of debate
for several centuries, and has several possible answers: One interpretation is the frequentist interpretation
that the probability of an event means that, if an experiment is repeated an infinite number of times, the
probability of the event is the fraction of times that the event occurs in the repeated experiments. This is
often used when dealing with simple physical processes, such as rolling dice, shuffling cards, and measurement
systems, where experiments can be repeated a large number of times at low cost.

There is a different school of thought: the subjectivist interpretation of the probability of an event
represents an individual belief that the event will occur, and reflects how much one would be willing to bet
that the event will occur. This interpretation is most appropriate when experiments cannot be repeated, such
as in economics and social situations. For instance, what is the probability that the New England Patriots
will win the Super Bowl this year? That is not an experiment that can be repeated; furthermore, asking
that question from different individuals can result in very different estimates of that probability. Similarly,
the probability that a nuclear reactor will fail corresponds to events that are hard to repeat, and hence are
often nothing but subjective estimates.

How are event probabilities estimated? In the frequentist approach, we use statistical observations: We
perform an experiment a large number of times N, and count the number of times that the event A is
observed, as N4. The ratio of the two, % is then estimated as the probability that event A occurs when the
experiment is conducted. This estimate varies with the number of times you run the experiment! Ideally,
you would like to conduct an infinite number of experiments, but that is impractical, and may not even give
you a consistent answer. In this course, we will describe a theoretical foundation for this approach, which

shows that as N — oo, the ratio approaches the underlying correct probability of the event A.
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For experiments that are hard to repeat, a different approach at determining probabilties of outcomes is
to apply some subjective beliefs based on principles of “equality” or “nonprejudice”: If there is no reason to
believe that some events are more probable than others, assume they are equally probable. This approach
is typical for games of chance, where we assumed ideal balanced coins, dice, roulette wheels, etc. In these
experiments, the number of outcomes is typically finite, and the probability of an event is proportionate to
the number of outcomes of the experiment that are in the event. Thus, the probability that a roll of two
six-sided dice totals 7 is proportional to the number of possible dice outcomes that total 7.

This course is based on the modern axiomatic theory of probability, espoused by mathematicians such
as Andrey Kolmogorov: Treat any experiment as generating outcomes in a set (finite or not): the sample
space. Events are subsets of the sample space, and probability is any function that assigns a number in [0,1]
to an event in a consistent way that must satisfy some intuitively appealing properties that will be discussed
later. Thus, in a subjectivist interpretation, we cannot assign arbitrary probabilities to different events (the
probability that the Patriots will win the Super Bowl versus the probability that a different team will win the
Super Bowl.) However, as long as the probabilities are assigned consistent with the axioms we will present,
we can use the foundations of probability theory to analyze and predict outcomes in engineering applications
in a rigorous manner.

In essence, probability theory provides us with a “calculus” for representing and reasoning about uncer-
tainty that is consistent with basic axiomatic foundations. Probability Theory is an axiomatic theory that
models uncertainty in a consistent manner for predictions and decisions. It allows for the computation of
probabilities for compound events, chaining of events, derived events as well as conditional inferencing and
information processing.

A common question is how probability is related to statistics. The two sciences are close: Probability
often deals with predicting the likelihood of future events, while statistics often involves the analysis of the
frequency of past events. They use similar axiomatic foundations, and the above distinction is not exclusive.
Statistics focuses on the analysis of past data, collected from experiments that involve uncertainty, and is
used to understand the results of experiments: validity of outcomes, typicality, cause-effect relationships, and
correlations. It builds models based on observations. Probability provides the calculus that allows models
built from statistics to be used for predictions and inferencing about future events.

The distinction is best highlighted by an anecdote: A probabilist and a statistician walk to a craps table.
The probabilist sees the pair of dice and thinks: “Six-sided dice? Assume each face of the dice is equally
likely to land face up. Now compute the chances that each possible number is rolled and bet accordingly.”
The statistician thinks: “Those dice may look OK, but how do I know that they are not loaded? I’ll watch
a while, and keep track of how often each number comes up. Then I can decide if my observations are
consistent with the assumption of equal-probability faces. Once I'm confident enough that the dice are fair,
T’ll ask my friend the probabilist to tell me how to bet.”

To paraphrase a quote attributed to Persi Diaconis, a Stanford professor, “the problems considered by
probability and statistics are inverse to each other. In probability theory we consider some underlying process
which has some randomness or uncertainty modeled by random variables, and we figure out what happens.
In statistics we observe something that has happened, and try to figure out what underlying process would
explain those observations.”

1.1.1 A Brief History of Probability

Probability and games of chance arise in anecdotes in every ancient civilization, from Asia, Europe, Central
and South Africa. Problems such as weather prediction were critical in estimating agricultural output and
governed the pricing of commerce. Observers of astronomical events used astrology for subjective predictions
of important events. In metallurgy, early makers of tools used formal rules to reason about mixtures of metals
in alloys as well as heating and quenching times to strengthen their tools and reduce impurities. Arab
mathematicians used permutations and combinations to list all possible Arabic words with and without
vowels, and used early statistics concepts such as frequency analysis for statistical inference. However, none
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of these early civilizations developed a consistent calculus for manipulating uncertainty across compound
events.

It is fitting that the foundations of modern probability arose from a gambling dispute. These foundations
were articulated in a series of articles between mathematicians Blaise Pascal and Pierre de Fermat in 1654.
Their discussion concerned a game of chance involving multiple rounds with two players who have equal
chances of winning each round. The players contribute equally to a prize pot, and agree in advance that the
first player to win a certain number of rounds will collect the entire prize, say the first to win five games. Now
suppose that the game is interrupted by external circumstances before either player has achieved victory, so
that player 1 has won 3 games and player 2 has won 2. How does one then divide the pot fairly?

Pascal and Fermat articulated some desired properties of the solution: a player who is closer to winning
should get a larger part of the pot. But the problem is not merely one of calculation; it also involves
deciding what a “fair” division actually is. In their discussions, Pascal and Fermat provided a convincing,
self-consistent solution to this problem, and also developed concepts that are still fundamental to probability
theory.

To them, it was clear that a player with a 7-5 lead in a game to 10 has the same chance of eventually
winning as a player with a 17-15 lead in a game to 20, so Pascal and Fermat therefore thought that
interruption in either situation should lead to the same division of the pot.

Fermat now reasoned thus:' if one player needs r more rounds to win and the other needs s, the game
will surely have been won by someone after » + s — 1 additional rounds. Fermat was thus able to compute
the odds for each player to win, simply by writing down a table of all possible continuations and counting
how many of them would lead to each player winning. Fermat now considered it obviously fair to divide the
stakes in proportion to those odds.

Fermat’s solution was improved by Pascal in two ways. First, Pascal produced a more elaborate argument
why the resulting division should be considered fair. Second, he showed how to calculate the correct division
more efficiently than Fermat’s tabular method, using a recursive technique.

Shortly after, encouraged by Pascal, Christiann Huygens published the first book of Probability that
used their axiomatic framework?. Because of the appeal of games of chance, probability theory soon became
popular; and the subject developed rapidly during the 18th century. One of the major contributors during
this period was Jacob Bernoulli, who studied games with uneven odds, and whose work® led to the law of
large numbers and to the definition of stochastic convergence, which was the foundation for the frequentist
approach to probability. His analysis of games led to the modern concept of Bernoulli random variables and
the binomial distribution.

Later in the 18th century, mathematician Abraham de Moivre developed a technique for approximating
binomial coefficients*. de Moivre’s work led to the development of the Central Limit Theorem, and the use
of the Gaussian distribution as a fundamental tool in probability and statistics.

Most of the early work in probability theory focused on games of chance. In 1812 Pierre-Simon, Marquis
de Laplace, introduced many new ideas in his book, Théorie Analytique des Probabilités. Laplace applied
probabilistic ideas to many scientific and practical problems, such as the theory of errors, statistical mechanics
and actuarial mathematics. In a subsequent article®, Laplace set out the principles for Bayesian reasoning and
inference, and developed the use of characteristic functions and moment generating functions for estimation
of moments of random variables. He also connected the principles of least squares estimation to probabilistic
inferencing. In his book, Laplace wrote “We see that the theory of probability is at the bottom only common
sense reduced to calculation; ... The most important questions in life are, for the most part, really only
problems of probability.”

1Keith Devlin: The Unfinished Game: Pascal, Fermat, and the Seventeenth-Century Letter that Made the World Modern.
2Rekeningh in Spelen van Gluck, translated as “On Reasoning in Games of Chance”.

3Ars Conjectandi, literally translated as ’art of conjecturing’, published after his death in 1713.

4 «“Approximatio ad Summam Terminorum Binomii (a 4 b)™ in Seriem expansi,” in “The Doctrine of Chance’s” (1718).
5Essai philosophique sur les probabilités (1814).
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Another important 19th century contributor was Siméon Denis Poisson, who was a mathematical physicist
working on various electromagnetic and optics problems. Poisson published a memoir in 1830, where he
discusses the ratio of female births and male births in France using the theory of Laplace and binomial
distributions based on Bernoulli’s work. Poisson proves the weak law of large numbers first. Then, he
considers a different limit where the number of births n grows, but the probability of a female birth p
diminishes so that pn is constant. He introduced the Poisson distribution as the limit distribution in this
problem.

In Russia, Pafnuty Chebyshev is one of the founding fathers of Russian mathematics. His contributions
to Probability Theory in the 19th century are extensive. He is best known for the the Chebyshev inequality®
that bounds the probability that a random variable with known mean and standard deviation has an outcome
that is more than a given number of standard deviations away from the mean, and is used to prove the weak
law of large numbers in a general setting. He was also an academic mentor of Andrey Markov, another major
contributor to the development of Probability Theory.

Andrey Markov is the developer of the theory of Markov Chains. He rigorously proved extensions of
the central limit theorem and the law of large numbers to sequences of dependent random variables, a
problem that he started working on with Chebychev. His extensive contributions are reflected by the many
modern concepts that bear his name, including the Markov inequality, Markov chains, Markov processes,
the Gauss-Markov theorem, and Markov random fields.

In the early 20th century, Ronald Fisher developed the foundations of modern statistical analysis, in-
cluding maximum likelihood detection, analysis of variance, design of experiments, and Fisher information.
He applied his principles to botany and genetics and became well-known as a biostatistician. Many modern
techniques in data science and statistics carry his name, including the Fisher’s linear discriminant and the
Behrens-Fisher distribution.

In 1933, Andrey Kolmogorov published his book, Foundations of the Theory of Probability, laying the
modern axiomatic foundations of probability theory that we teach today. Subsequently, Kolmogorov ex-
tended his work to develop the foundation for estimation, smoothing and prediction for stochastic processes,
key techniques that are at the heart of modern navigation systems. In statistics, he is best known for the
Kolmogorov-Smirnov test for testing whether a collection of independent samples corresponds to a given
distribution for a random variable.

1.1.2 Probability at Boston University’s College of Engineering

We briefly mention some of the research areas at Boston University that use probability as its foundations.

In the areas of communications and network systems, probability is used in the modeling of traffic, and
in performance analysis of networks. It is also used in the physical layer processes of designing signaling
strategies, along with coding and decoding. It provides the foundation for information theory and the design
of efficient coding strategies for wired and wireless systems.

Probability is extensively used in the analysis of manufacturing systems and networks. Dynamic modeling
of demand and production involves probabilistic principles. Key techniques for quality control and product
development involve important concepts from design of experiments and statistics.

In aerospace and robotics systems, probability theory provides the foundations for estimation of the
system conditions such as location and orientation using noisy sensors, so that effective control can be
applied. For intelligent systems and autonomy, probability provides the foundations for machine learning
algorithms for robot vision, classification and situation assessment.

In acoustics, we model propagation of waves through random media using the principles of probability, as
well as in sonar signal detection and imaging. Probability also provides the foundation for acoustic imaging.

6 P. L. Chebyshev, Des valeurs moyennes,J.Math.Pures Appl.(2), 1867.
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In space physics, we use probability principles as the foundation for imaging the ionosphere with inco-
herent scatter radar, for tracking space objects using telescopes and radars, and for representing uncertainty
in propagation of light through the atmosphere in adaptive optics.

In biomedical systems, we use probability to model the effectiveness of treatments and procedures, and
to assess risks. We also use probability to reduce noise in signals and extract meaningful information from
signals and images.

In signal and image processing, probability provides the foundation for signal enhancement, denoising,
detection and inference, including some recent work on imaging with single-photon cameras. In photonics
and nanotechnology, probability provides the foundation for photon propagation and quantum mechanics.

In computer engineering, probability is used for the analysis of algorithms, and for reliability, fault detec-
tion and isolation. Probability is also used for the design of novel algorithms for solving hard combinatorial

problems that exploit randomness.

Figure 1.1 shows examples of some of the applications listed above.

Measured Estimated
Unknown Random Unknown o 1 e 11
Events Events Events g
Sensing Inference Commat aion i
T
Ilustration of inference Hypothesis testing in Comms Cancer detection in images

SWAY (single subject)
Lett Right
=

Displacement (mm)

Diesaxoeg

—lio noise
—Hoise.

§ kil

o 5

2 3
Time (sconds)

Noise mitigation Monte Carlo Computation Noise for stabilization

Figure 1.1: Applications of Probability

1.2 Axioms of Probability

A formal axiomatic theory of probability is necessary to deal with more complex issues such as chaining of
events and derived events. At its foundations are fundamental definitions that allow a formulation, along
with specific axioms that are accepted without proof as needed by the theory. What follows in the theory of
probability are theorems, propositions and lemmas that are consequences of the axioms and definitions and
allow the application of probability.

We begin with a review of set theory, which forms the mathematical basis for much of the axioms of
probability theory.

1.2.1 Set Theory

Definition 1.1
A set is a collection of elements.
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Elements can be anything you like: numbers, letters, people, movies, combinations of items, etc. We usually
use capital letters (e.g. A) to denote sets, and lower case letters (e.g. e, x) to denote elements of the set.

A set can be empty, which is called the null set, also denoted by the symbol . The collection can have
a finite number of elements, a countably infinite number of elements, or an uncountable number of elements
(e.g. an interval of the real line. ) There are several ways to define a set, including

e List its elements: A ={1,3,5,7}.

e Give a rule in words to generate the set: A = {odd integers greater than 2}.

e Give a rule using mathematical symbols: A = {x integer : x > 2}.

“.”

In the last version, we use the variable x, and the colon is used as a shortcut for the expression “such
that”. Hence the last rule reads: A is the set of all numbers such that the number is greater than 2 and the
number is an integer. We refer to this version as “set-builder notation.”

We use the following notation throughout this text:

e r € B means that “z is an element of the set B”.

e z ¢ B means that “z is not an element of the set B”.

The empty set or null set is the set with no elements. Notation: ) or { }.

e We denote by (2 the universal set, i.e. the set of all possible elements.

A subset A of the set B, denoted as A C B, is a collection of some (or none) of the elements that are
in B.

Two sets are equal if A C B and B C A. Thus, the two sets contain the same elements.

A Venn Diagram can be used to illustrate relationships between sets. For instance, the figures in 1.2
illustrate Venn diagrams for different set operations. Understanding set operations is much easier if you can
visualize the operations using a Venn diagram.

On sets, we define elementary set operations:

Set complement A = {z: 2z € Q and x ¢ A}. Note that (A°)° = A.

Set union AUB = {z € Q:2 € A or x € B}. This is sometimes written as A + B.

Set intersection AN B ={x € Q:x € A and x € B}. This is sometimes written as A - B.

e Set Difference A— B={r € Q:2x€ Aand z ¢ B}. Note A— B = AN B°.

These operations are illustrated in 1.2.

Below are other important set concepts that we use in the course:

e A and B are disjoint, or mutually exclusive, sets if and only if AN B = {).

e A finite collection of sets A1, ..., A, are mutually exclusive if and only if A; N A; =0 for any i # j €

{1,...,n}.

e A finite collection of sets Ay, ..., A, is collectively ezhaustive in  if and only if A;UAsU...UA, = Q.
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Venn Diagram
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Figure 1.2: Illustration of Set Operations and Concepts

e A countable collection of sets Ay, As, ..., is mutually exclusive in Q if and only if A; N A; = @ for all
i,j€{1,2,...}.
e A countable collection of sets Aj, As, ..., is collectively exhaustive in € if and only if A;UAsU... = Q.

e A finite or countable collection of sets is a partition if it is both mutually exclusive and collectively
exhaustive.

From the above definitions, there are several results that can be derived, known as De Morgan’s Theorems.
The proof of these is obvious; Figure 1.2.1 illustrates the proof of the first result.

e (AU B)® = A°N B° That is, an element that is not in (A or B) must be (not in A) and (not in b).

[ ] (A1UA2UA3U)C:A‘1:QAEQA§O

[ ] (AlmAQQAgﬂ)C:AEUAEUAEU

B¢ A€ (A U B)C

N > =D

Figure 1.3: Illustration of De Morgan’s First Theorem.

To complete this section, we review some mathematical notation that we use throughout these notes.
We use the symbol V to denote for all. Hence Yz € A means for all elements z of the set A. The existential
qualifier 3 is used to denote that there exists an element. Hence 3x € A means that there exists at least one
element z that belongs to A. The negative of there exists is denoted 3.
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1.2.2 Probability Axioms

The basic model for probability begins with the concept of a random

experiment: An experiment is a procedure that generates an observable Q
outcome. An outcome is a possible observation of an experiment. The

sample space () of an experiment is the set of all possible outcomes w @

of the experiment. Each possible outcome w is an element of the sample e
space Q.

An event is subset of 2: that is, a collection of outcomes. Note that an
event may contain a single element, or be the empty set, or be all of 2. An
event is something we will assign probability to; in our axiomatic theory,
we assign probabilities to events, not outcomes. Note that it is possible
that not every subset of 2 is an event, as we will explain later.

Figure 1.4: Illustration of out-
comes w and events A.

Example 1.1

Experiment: roll a normal six-sided die once. An outcome is the number that shows up on top of the die, which is in
{1,2,3,4,5,6}. The sample space 2 = {1,2,3,4,5,6}. Examples of events are 1 = {1, 3,5}, the set of all odd outcomes;
E> = set of all outcomes greater than 2 ({3,4,5,6}); and E3 = set of all outcomes that are the square of an integer

({1, 4}).

Example 1.2

Experiment: Perform 2 rolls of a quadrilateral (four-sided) die, record both numbers. An outcome is the ordered pair of num-
bers: {1,2,3,4} x {1, 2,3, 4}, so we have Q consisting of 16 ordered pairs. Examples of events are E1{(1,3), (2,2),(3,1)},
the set of all outcomes where the two numbers sum to 4; E> = the set of all outcomes that sum to an odd number

(1(1,2), (1,4),(2,1),(2,3), (3,2), (3,4), (4, 1), (4,3)}.)

Example 1.3

Experiment: Go to the Green Line station on St. Mary's Street and Commonwealth Avenue, going West and wait for the
train to arrive. The outcome is the number of minutes (as a real number) before the train arrives. Hence, an outcome is a
number x in the sample space Q = [0, 00). Examples of events are E; = {train arrives under five minutes} = {w : w < 5};
and E> = {train arrives in more than 20 minutes} = {w : w > 20}.

Example 1.4

Experiment: Measure the arrival time of a pulse, arriving at a random time in the interval [0,T]. An outcome is the time of
arrival, namely a number ¢ € [0, T]. The sample space 2 = [0, 7] contains an uncountable number of outcomes. Examples
of events are £y = {w = T'/2} which contains a single outcome, or E; = {w : 0 < a < w < b < T} that contains an
interval of outcomes.

1
Example 1.5
As an experiment, pick a point in the unit square [0, 1] x [0,1]. An outcome w is the ordered pair )
consisting of the coordinates of the point, namely a pair (z,y) € [0,1] x [0,1]. The sample space % 2 !

Q is an uncountable set of ordered pairs Q = {(z,y) € [0,1] x [0,1]}. Examples of events are
E1 = {(1/2,2/3)} which contains a single outcome, or E2 = {(z,9) € [0,1)*: z + y < 0.2} that

contains a region of outcomes. Figure 1.5: Event

FE5 in ex. 1.5.

Note that there is a correspondence between the terminology of set theory and that of the probability
axioms. We highlight the correspondence in the table below:

Set theory Probability theory
Universal set <= Sample Space
Element <= Outcome

Subset <= Event

Let’s define the collection of all events in an experiment as an event space £. As we highlighted before,
we may not want to define every subset of ) as an event. Since events are sets A for which we want to
compute the probability that an outcome is A, there are certain properties that the space of all events must
have. We list them below.
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Definition 1.2
The event space £ is a collection of subsets of €2 which satisfies the following axioms:

1. Q € &. Thus, the sample space 2 is an event, and the probability that an outcome is in €2 should be 1.

2. If A€ &, then A° € £. The complement of an event is also an event, because we want to assign probability to the
event that the outcome is not in A.

3.IfA, €€,i=1,2,..., then U2, A; € £. The union of a countable number of events is an event. This implies that
the space £ is closed under the operation of countable unions.

Note that, by the properties of set theory, this implies that ) € £, because Q¢ = ). It also implies that
the intersection of two events A, B is also an event A N B, because AN B = (A° U B)¢ using De Morgan’s
theorems. Also, the set A — B = {w € Ajw ¢ B} € &, because A — B = AN B¢, which is the intersection of
two elements of £.

In terms of assigning probabilities, we will only consider events that are in the event space £. This
avoids some mathematical pitfalls that can arise if we consider £ to be all of the subsets of 2. We call a set
countable if its elements can be indexed by the natural numbers 0,1,2,... When the set () is countable, we
can simply let £ be the collection of all subsets of €2, as these mathematical difficulties only arise for sets
with uncountable numbers of outcomes, such as an interval of real numbers.

The event space € is often called a o-field (or o-algebra) in mathematics because it contains €2, it is closed
under countable unions and complementation. In many cases, we construct the set of events £ by specifying
some of the basic events that we want to compute probabilities for, and then finding the smallest collection
of events that contains the basic events, and is closed under countable unions and complementation.

Example 1.6
Flip 2 coins, a penny and a dime. Q = {hh, ht,th,tt}, with 4 outcomes.

Events of interest F; = {outcomes with ¢ heads}. Thus, Ey = {tt} contains 1 outcome; Eq1 = {ht,th} contains 2
outcomes.

What is the smallest event space £ that contains these events? Itis & = {0, Fo, E1, B2, EoUFE1, Eg U Es, E1 U E>, Q}.

Note that £ contains the union of any collections of events, and the complement of each event! However, there are
only 8 elements in £, whereas the total number of subsets of Q is 16. Thus, subsets such as {ht} are not events in this
event space.

Example 1.7

Consider an experiment consisting of selecting a real number in the interval [0, 1]. Consider as events of interest sets of
the form (a,b),a,b € [0, 1]. We can define the event space £ as the smallest o-field that contains these open intervals as
events. Note that £ contains the set with two points {0, 1} because it is the complement of (0, 1). With further thought,
we realize that £ will contain every closed interval [a, b], a,b € [0, 1], as well as many other events of interest.

An event A € £ is called an atom if it contains only a single outcome; atoms are events of the form
A = {w} for some w € Q. Events A; indexed by a set I are called mutually exclusive if A; N A; = 0 for all
1,7 € I,i # j. Note that this index set can be infinite in the definition.

We have thus far defined two key components of the axioms of probability: the sample space €2, which
is a collection of outcomes, and the event space &£, which is a o-field collection of subsets of 2. The third
component we need is a probability measure P that assigns a probability value in [0, 1] to each event contained
in &; that is, it maps the set of events into the closed unit interval [0,1]. This probability measure P[4] is
interpreted as the probability that the outcome of the experiment is contained in the event A € £.

The axioms which a probability measure must satisfy are:

1. (Non-negativity:) For any event A € £, P[A] > 0 Probabilities are non-negative.

2. (Normalization:) P[Q2] = 1. The probability that we generate an outcome in € is one.
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3. (Countable Additivity) For any countable collection of mutually exclusive events A;,i = 1,2,...,
we have P[U, A;] = Y00 PIA].

Example 1.8

Consider a sample space Q = [0, 1], the unit interval. How do we define events in this space? If we let £ = {A: A C Q},
this may become too large a set, with too many elements, such that it is difficult to define a probability measure on these
events that satisfy the above axioms.

For instance, assume we want to define a probability measure so that all points have the same probability. For w € €,
then P[{w}] must be a constant. However, that constant must be zero, because otherwise we could find an infinite number
of disjoint sets that we could add and get a subset of {2 with infinite probability! Thus, knowing the probability of individual
outcomes does not help us in defining a probability measure.

However, consider a different set of events, E,p = {0 > a < w < b < 1}. For this interval, we can easily assign a
probability measure corresponding to the length of the interval, so that P[E, ] = b — a. Define the event space £ as the
smallest o-field that contains all the intervals F,; and is closed under countable unions and complementations: this is
known as the Borel o-field. Note that every event A € £ can be written in terms of countable unions and complements of
intervals, for which we know how to compute the probability measure. We can extend the measure P[A] to all elements
in € using the axioms of probability, including the countable additivity axiom. We will show that the countable additivity
axiom implies that the probability measure is continuous, and hence we can extend the definition on open intervals to apply
to all intervals, and to countable unions and intersections of intervals.

We are now ready to define a probability space. A probability space is a triple (2, £,P) which is used to
describe the outcomes of a random experiment. The set €2 is the set of all possible elementary experiment
outcomes w. The set £ is a o—field of events that are subsets of € and satisfy the properties of event spaces.
The probability measure P : £ — [0, 1] satisfies the axioms of probability measures.
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Figure 1.6: Illustration of Probability Concepts

Based on the above definition, probability measures can be shown to satisfy additional properties, dis-
cussed below. We show brief proofs of selected properties to illustrate how to use the basic properties of
probability measures to compute probabilities.

1. P[A] = 1 — P[A°]. This follows because A and A° are mutually exclusive, and A U A® = Q, so
P[A] + P[A°] = P[Q] = 1.
2. P[] =0.
3. For any finite collection Ay, As, ..., A, of mutually exclusive events,
PlUf Al =) PA;].
i=1

4. P[AUB] = P[A]+P[B]-P[ANB]. This follows because AUB = AU(B—A), and A, B— A are mutually
exclusive. Hence, P[A U B] = P[A4] 4+ P[B — A]. Furthermore, B = (B — A) U (AN B), and these two
sets are mutually exclusive. Thus, P[B] = P[B — A] + P[A N B|. Hence, m{B — A] = P[B] — P[AN B].
Substituting into the first equation yields the result.
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If B C A, then P[B] < P[4] and P[B] 4+ P[A — B] = P[4].
P[AUBUC) =P[A] +P[B]+P[C] —P[ANB] -P[ANC]|-P[BNC]+P[ANBNC]J;
If A;,..., A, are mutually exclusive events, P[4;] = Y"1 | P[A4;].

If A;,..., A, are mutually exclusive events and U ; A; = Q, then Y "  P[A4;] = 1.

© ® N o o

If Ay, Ay, As, ... are mutually exclusive events and U2, A4, = €, then for any event A, P[A] =
Yo P[AN A

This last result is important because it allows us to compute the probability of a complex event as the sum
of probabilities of simpler, mutually exclusive events. That is the cornerstone of how most probabilities of
events are computed: we break down the events into mutually exclusive subsets for which the probabilities
are known, and we use the countable additivity property.

Example 1.9

Consider the example of a shuffle of a deck of cards. The sample space Q2 consists of the possible orderings (permutations
of 52 cards). While there are many outcomes, there is still a finite number of them. Thus we can make the event space £
the set of all subsets of 2. Assuming that all permutations are equally likely, the probability measure P[A] can be defined
to be proportional to the number of outcomes in A. For instance, consider the event A consisting of all outcomes where
the first card in the deck is the ace of spades. The number of outcomes in A is 51! (the first card is the ace of spades, the

other 51 can be in any order), and the total number of elements in € is 52!. Hence, P[A] = 5—12

Example 1.10
Consider the toss of a fair coin, with outcomes H,T'. The set of outcomes Q = {H,T}. The o-field £ is

F = {{H},{T},0,{H,T}}

If the coin is fair, the measure PP will have the following properties:

PIHY)] = 3:PUTY = 53 BI{H, T} = 1,P0] = 0;

One of the important properties of probability measures is the continuity of probability, in the sense
specified below. If we have a sequence A; C Ay C --- of increasing events in £, the sequence A; is monotone
increasing and converging to the union U2, A;. Will the probabilities converge also? They will; they are an
increasing sequence P[A;] of real numbers that are bounded above by one. This allows us to define probability
measures on events that can be expressed as limits of events, as shown in the following lemma.

Lemma 1.1
Suppose A1, Az, ... is a sequence of events in £. Then,

1. If Ay C Ay C -+, then U2 Ay € &, limy—, o0 P[Ag] exists, and one defines P[URZ; Ay] = limp— o0 P[Ak].
2. If Ay D Ay D -+, then N2 Ay € &, limp_, o0 P[As] exists, and one defines limy_, o0 P[Ax] = P[NFZ; Ax].

proof For the first part, note that UZ2 ; A, is a countable union of events, and hence it is also an event, because
event spaces are closed under countable unions and complementation. Let Dy = A1, Dy, = A — Ag_1,k > 2.
Note that Dy, € &, because Dy, = Ay N Af_; and intersections of events are also events. Furthermore, the
the collection D1, D5, D3, --- is mutually exclusive. Then, by the countable additivity axiom of probability,

k
P[Ai] = PUj_, 4] = PUj_, D] = ) P[Dy],
j=1
and thus is an increasing sequence of numbers. Since P[A] is bounded by 1, the monotone convergence

theorem guarantees it has a limit that is a number less than or equal to 1, so limg_,o P[Ag] exists and is a
probability. Thus, the probability of the event U2, Ay is well-defined, as

PO Ax] = lim PA] = > P[Dy).
j=1
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For the second part, consider the sets By = Af. Then, P[A;] = 1 — P[By]. By the first part, we know
U, By, is an event, and that limy_, . P[By] exists and is a probability, and that we define P[U2, By] =

Now, note N2, A, = (U2, By)¢, so it is also an event. Since it is the complement of an event,

P[ﬁzczlAk} =1- ]P)[UfilBk] =1- lim P[Bk] = lim (1 — ]P)[Bk]) = lim P[Ak}
k—oc0 k—o0 k— o0

Example 1.11

Consider Q = [0, 1], the unit interval. Let the set £ be the Borel o-field in ©. Note that not all subsets of  will be Borel
sets, although every interesting subsets we care about is likely to be Borel sets. For an open interval (a,b), we define the
measure as its length:

P[(a,b)] =b—a.

We can now use the axioms of probability to extend this definition to all Borel sets. It should be easy to see that every
Borel set can be written as a countable union of intervals (closed or open, so that a set with only one element x can be
written as the interval [z, z]). By lemma 1.1, we can now extend the measure P[A] to compute this uniquely using a limit
process.

Why is the concept of event needed over and above the concept of outcome? There are many situations
where we want to model the set of possible outcomes as continuous, rather than discrete. In those situations,
we know that there are at most a finite number of mutually exclusive events that have probability at least
€. By defining probability measures on events, we are able to focus on a finite number of significant events
instead of an uncountable number of outcomes. A Furthermore, not every subset of 2 can be considered an
event, because it may be impossible to construct a probability measure satisfying the probability axioms. If
you are interested in this topic, we show an example in Appendix B of a space with some subsets for which
we cannot define a consistent probability measure that satisfy the probability axioms.

In many applications, we define the event space £ by defining a collection of basic events for which we
want to compute probabilities, and then finding the smallest o-field that contains those events. By smallest,
we mean the following: A o-field £’ is said to be a refinement of £ (written as £ C &’), if and only if, for any
event A € £, said event is also A € £'. The smallest or coarsest o-field that contains a collection of events
{4;} is denoted as 0({4;}), and is not a refinement of any other o-field that contains the collection of events
{A;}. We used this approach to define Borel sets over the unit interval, where the A; were open intervals in
[0,1]. The definition of Borel sets can be generalized to the real line, or n-dimensional Euclidean spaces, or
to many other spaces.

As a final note, in any probability space, there can be events which have no probability of occurring.
Thus, the difference between two events is often negligible; in such cases, we would like to define a notion
of equivalence of events. Two events A, B € &£ are said to be equal with probability one if and only if
P[AUB—-ANB] =0.

The axiomatic theory of probability highlights the approach we need to compute the probability of any
event of interest in applications. We outline the steps below, and then proceed to apply to solve probability
questions in several examples:

Identify the sample space from experiment description (the set of all outcomes).

Describe probability law on events (atoms if finite).

Identify event of interest

Calculate the probability of this event as follows:

— Partition the event of interest into disjoint events for which the probability measures are known.

— Use axioms of probability to combine the disjoint event probabilities.
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Example 1.12
Consider the experiment as one roll of a six-sided die, with balanced outcomes. In this experiment, Q@ = {1,...,6}. The

problem is to compute the probability of getting an odd outcome (E1), and the probability of getting an outcome greater
than 2 (E2).

Since we assume the die is balanced, we know P[{w}] = 1/6, for w € Q.
We identify E1 = {1,3,5} = {1} U {3} U {5}. Given this disjoint decomposition,

PlE1] = B[{1}] + PI{3}] + F[{5} = 3 = 5

Similarly, E2 = {3,4,5,6} = {3} U {4} U {5} U {6} which is another disjoint decomposition, so

2

P[E2] = P[{3}] + P[{4}] + P[{5}] + P[{6}] = 3.

Example 1.13

Consider the experiment of 2 rolls of a quadrilateral (four-sided) die, record both numbers and their order. The sample
space Q = {1,2,3,4}x{1,2,3,4}. We are asked to compute the probability of the following events: FE; is the set of
outcomes that sum to 5. Ej is the set of outcomes that sum to a prime number not divisible by 3 or 5. Ej3 is the set of
outcomes such that the smallest of the two numbers is 2.

Proceeding as before, every ordered pair has an equal probability of occurring, which is 1/16. Now,
Er={(1,4),(2,3),(3,2),(4, D} ={(1, 9} U {(2,3)} u{B,2)} u{(4, 1)}.

Ey = {(1’ 1)? (374)7 (47 3)} = {(17 1)} U {(3v4)} U {(473)}
B3 ={(2,2),(2,3),(2,4),(3,2),(4,2)} ={(2,2)} U{(2,3)} U{(2,49)} u{(3,2)} U{(4,2)}.

Thus,
PlEA] =P[{(1, 9} + P({(2,3)}] + P({(3,2)}] + P{(4, 1)}] = 1% = i
PlE2) = P[{(1, D)} + P{(3,4)}] + P[{(4,3))}] = 1%
PlEs) = P[{(2,2)}] + P[{(2,3)}] + P[{(2,4)}] + P[{(3,2)}] + m[{(4,2)}] = %

What about computing P[E1 N E3]? Note F1 N E3 = {(2,3),(3,2)} so P[E1 N E3] = &

16"

Note that in the above examples, we have used symmetry of the measure P to simplify computations.
The next two examples describe a more complex experiment.

Example 1.14

Our experiment consists of generating telephone calls. Calls can be long or brief, and can voice or data. Thus, an outcome
BV denotes a brief voice call, and LD denotes a long data call. The set of outcomes Q = {LV, LD, BV,BD}. The
event set £ is the set of all subsets of ). Assume we know the following: the probability of a long voice call is 0.35, the
probability of a voice call is 0.7, and the probability of a long call is 0.6. What is the probability of a brief data call? What
is the probability of a brief voice call? What is the probability of a long data call?

We use the axioms of probability:
P{LV,LD}| =0.6 =P{LV}]+P{LD}] =0.35+P{LD}] = P[{LD}) =0.25

P[{LV, BV}] = 0.7 = P{LV}] + P[{BV}] = 0.35 + P{BV}] = P[{BV}] = 0.35

P{BD}) =1— (P{LV}]] + P{BV}] 4+ P[{LD}]) = 0.05
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Example 1.15

Assume we have 2 factories, making the same
part. However, they have different quality con-
trol. The probability that a part from factory 1
is OK is 0.9. The probability that a part from
factory 2 is OK is 0.8.

Assume that factory 1 makes 70% of the parts
that are sold, and factory 2 makes 30% of the
parts. The outcome from the experiment is a

part selected at the store, which will be either 063 0.07 0.24 0.06
good (G) or bad (B), and will come from factory
1 or factory 2. Figure 1.7: Example 1.15.

Given the above description, we can compute the probability of each of the atoms as follows: P[{1G}] = 0.7%0.9 = 0.63,
namely, the probability that the part comes from factory 1 times the probability that the part is good given it comes from
factory 1. Similarly, P[{1B}] = 0.07,P[{2G}] = 0.24, P[{2B}] = 0.06.

The sample space 2 = {1G,1B,2G,2B}. We can view the experiment graphically as shown in Figure 1.15.

What is the probability that the part you buy is good?
P[{1G,2G}] = P{1G}] + P[{2G}] = 0.87

The above example illustrates how our probability calculus allows us to define complex compound ex-
periments.

Note the following: if the sample 2 has a finite number of outcomes wy,ws,...,w,, we usually take the
event space £ to be the set of all subsets of 2. In this case, we have the finest disjoint partition of ) as
Q= {w; }U{w2}U-Uw, }, and so we can define the probability measure P[-] on any event by defining it on the
atoms P[{wg}],k = 1,...,n. In this case, to compute the probability of an event such as A = {wy,ws, w5},
then we can recognize that A is the union of disjoint sets {w1 }, {ws}, {ws}, so

PIA] = P{w1}] + P[{ws}] + P[{ws}].

Example 1.16
Consider the following experiment: Ask a person which of the following cities they prefer to live in: Boston, Chicago, Los
Angeles, New York, San Francisco. The answer is the outcome, which we denote in shorthand as S = {bo, ch,la,ny, sf}.

Since it is a finite space, we can assign probabilities to each atom containing a single outcome, as

Pl{bo}] = 5 Bl{sf}] = 5 Pl{ch] = 55Fl{la}] = 5Fl{n}] = 5.

Consider the event A = { east coast city}. Then, A = {bo,ny}. Using a disjoint decomposition,

P[A] = Pl{bo}] + Pl{ng}] = 5 + 5 = 51

Consider the event B = {westcoastcity} = {sf,la}. Then, P[B] = P[{la}] + P[{sf}] =

N
o0l
o0
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1.3 Conditional Probability and Independence of Events

Conditional probability is the foundation of many engineering applications, especially those involving infer-
ence and decision making. Examples of these involve deciding whether radar measurements correspond to
the reflections from an aircraft, whether the observation of symptoms indicate the probability that a patient
has a disease, and similar questions. In addition, conditional probability is useful for describing complex
probability models, such as experiments where the outcome depends on conditions of earlier outcomes. For
instance, if you are taking the SATs online, the next question that appears depends on whether you answer
the current question correctly or not.

Consider a probability space, and a pair of events A, B € £ such that P[B) > 0. We define the conditional
probability of event A given that B has occurred as:

P[AN B)]

PIAIB] = =5

(1.1)

Note that this is not defined when P[B)] = 0. Such events have no proba-
bility of being observed in practice, which leads to the lack of a definition.
Intuitively, we think of conditioning on event B as restricting the universe @
of possible outcomes to those in B. Hence, only outcomes in A N B are
now possible out of those in A. Furthermore, we need to rescale or nor-

malize so that the conditional probability satisfies the normalization axiom:

P[B|B] = 1, which requires that we divide by P[B]. Fli)glure 1.8: Conditional prob-
ability.

Note the following important relationships:

PANB]  PANB
PIBA = =7 = PA— B = PlAN B

P[A N B] = P[B|AP[A] = P[A|B]P[B

We can extend this to n events Aj, Ao, ..., A, recursively, as:
PlNp_qAx] = P[A1|P[A2]A1|P[A3| A1 N As] - - P[A,|A1 N AN - N Ay q].

Note that this assumes P[4; N A2 NN A,_1] > 0 so that conditional probabilities are defined.

b @D
PIB] -
@ C

P[A|B] = P[Hf‘[;f] Independence: P[A N B] = P[A]|P[B] P[A|B] = _P[4;|B] for A; partition A

Figure 1.9: Hlustration of Conditional Probability Concepts

Conditional probability functions have an interesting property: they are also probability measures, and
a conditional probability space can be defined! Hence, one way of understanding conditional probability is
in terms of two operations: Restrict the set of outcomes to B, and compute the relative probability of AN B
in the restricted sample space B. Restrict means the conditional probability space focuses only on outcomes
in B, so the new sample space ' = B, and the events are £’ = {AN B, A € £}. The conditional probability
defines a new measure P[-| B] on these events that forms a probability space. Rescaling means the original
measure P[-)] must be rescaled (divided by P[B]) so that P[Q)'|B] = P[B|B] = 1.
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Example 1.17
Consider the city example 1.16. What is the probability that someone’s preferred city is Los Angeles, given that their
preferred city is on the west coast?

Pl{la}|{la, sf}] = Clat 0 {lasf}] - Pl{la}]

P[{la,sf}]  Pl{la,sf}]

||l
w

Example 1.18
Consider the previous example 1.17. What is the probability that, if you find the part is good, it was made in factory 1?7

The observed event is B = {(1G, 2G)}, meaning the part is good. The event of interest is A = {1G,1N}. We want

P[A .
P[A|B] = H528) = 868,

Here is a brief summary of the properties of conditional probability, which reflect the concept that it is
a full probability measure on a restricted sample space corresponding to outcomes in B:
1. P[A|B] € [0, 1]. It is a probability measure.
2. P[B] =P[B|B] = 1.
3. If A=A UAs U... where A; are mutually exclusive, then
P[A|B] = P[A;|B] + P[As|B] + ...

To show this last item, note the following:

P[ANB] P[(Ux;4;)N B]

FAP= TR T e
= W (note A; N B, A2 N B, ... are mutually exclusive)
YRS PIANB] NP4 NB

Example 1.19

Consider an experiment where we roll two 6-sided, balanced dice, so all 36 outcomes are equally likely. We consider the
following events: B is the set of all outcomes where the smallest of the two numbers rolled is 3. Note that B has 7
elements. A is the set of all outcomes where the first die rolls a 3. Note that A has 6 elements, four of which are in B.

In this case,

P[A|B] = % - ;

Conditional probability is often used to describe the probability measure on complex experiments. In
these experiments, you can define the overall probability as a sequence of conditional experiments. We have
already seen this illustrated in example 1.15, where the probability that a part was good was dependent on
which factory produced it. We illustrate this in the following example:

Example 1.20
We are going to draw three cards from a perfectly shuffled deck of cards, where each order is equally likely. What is the
probability that we draw three hearts?

Let A be the event that the first card we draw is a heart. Since there are 13 of those in the 52 cards, P[A] = 1. Let
B be the event that the second card we draw is a heart. Note that we can compute the conditional probability of B given
A, because if A was observed, then there are only 12 out of 51 cards left that are hearts, so P[B|A] = £2. Let C be the
event that the third card drawn is a heart. Then, P[C|BNA] = L.

Then, using the multiplication rule,

1 12 11 11

PANBNC) =PIC|BNAPBIAPA] = ;- == - =5 = .
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One of the foundations of inference is Bayes’ theorem, which is a consequence of the definition of condi-
tional probability.

Theorem 1.1
Bayes' Rule: Let A, B be events in a probability spae with P[A) > 0,P[B) > 0. Then,

P[BJAJP[A]

PIAIB] = S

Bayes’ Rule provides a technique for evaluating the probability of cause, based on the observation of effect.
For example, for medical diagnosis, we often to compute P[B|A], what is the probability of cause B, given the
observed effects A. We often have a model for P[A|B], the probability that certain effects A are associated
with cause B. Using Bayes’ Rule, we reverse the implication.

An example of the application of Bayes’ Rule was seen in example 1.18. In that example, we computed
the probability that a good part was manufactured in factory 1, after seeing the effect that the manufactured
part was good. However, one of the hardest part for applying Bayes’ Rule is computing the denominator
P[B].

One way of doing this is to use the Law of Total Probability, which can be stated as follows.

Theorem 1.2

Let Ay, Ag, ... denote a countable set of pairwise mutually exclusive events with P[4;)] > 0 for ¢ = 1,2, ..., and assume
that A; U A2 U ... =, so the events are collectively exhaustive. Thus, A, Aa,... is a partition. Then, for any event
Beé,

P[B] = P[B|A1]|P[A1] + P[B|A2|P[A2] + ... =P[BN A ]+ P[BNAs] +...

. The Law of Total Probability is useful for computing the denominator P[B] in Bayes’ Rule, by decom-
posing B as the union of disjoint events.

Example 1.21

You go in for a diagnostic test for a specific diseases, and you test positive! You know that the test can have false positives,
and the probability of a false positive (a positive diagnosis when you are not ill) is 0.05. However, you know that the test
never misses a disease: the probability that the test returns a positive diagnosis if you are ill is 1.0. However, you know
that this is a rare disease, that affects only 0.1% of the population.

Given all that information, what is the probability that you are actually ill?

Let's proceed as before: outcomes of the experiment are Q =
{H+,H—,I+,1-} where H indicates that you are healthy (I for ill),
and +, — are the possible outcomes of the diagnostic test. Define the
events H = {H+,H—-},1 = {I+,1-} correspond to the person being
healthy or ill, and the events P = {H+,1+},N = {H—,I—} to the
event that the test outcome is positive or negative. Can we construct the
probabilities of these outcomes given the information? Note what we are
given the following in the problem description:

HNP

HNN

e Only 0.1% of the population has the disease: P[I] = 0.001,P[H] =
0.999.

e The probability of a false positive is 0.05: PlJHNP|H] = 0.05, P[HN
N|H] = 0.95.

e The test never has a missed detection: P[INP|I] = 1;P[|[NN|I] =
0.

InpP

INN

Figure 1.10: Figure for example 1.21.

The tree on the right illustrates a conditional diagram for this information,
and helps us organize our computation.



1.3. CONDITIONAL PROBABILITY AND INDEPENDENCE OF EVENTS 31

We want to compute P[I|P]. We use Bayes' rule as:

_PInP] _ P[PP[]
U= "R~ R

From the diagram, we can see the following: P[I] = 0.001, P[P|I] = 1, so the terms in the numerator are readily evaluated.
What about the denominator? For this, we use the Law of Total Probability, as

P[P] = P[P|I]P[I] + P[P|H]P[H] = 1 % 0.001 + 0.05(0.999) = 0.05095.

Combining the numerator and denominator, we get P[I|P] = ;%235- ~ 0.0196.

Note how we used the Law of Total Probability to compute the denominator, since H, I form a partition of 2. The
message is that you should not be fast to assume you are sick...probability can help understand how to combine the different
pieces of information!

Example 1.22

Consider a noisy communication channel, where binary bits are transmitted (values 0 or 1) but received occasionally with
errors. Assume that a bit is received correctly with probability 0.95, and is received in error with probability 0.05. Assume
that the probability of transmitting a 1 is 0.1, and a zero is 0.9. Given that the bit you received is 0, what is the probability
that the transmitted bit was 07

Define the following events:

Event A;: Bit O transmitted. We are given P[A;] = 0.9.

Event As: Bit 1 transmitted, P[A2] = 0.1.

Event Bi: Bit 0 received. P[B1]|A:1] = 0.95,P[B1]|A2] = 0.05.

Event Bs: Bit 1 received. P[Bz|A1] = 0.05,P[Ba|A2] = 0.95.

We wish to compute P[A;|B1]. Using Bayes’ Rule, and the Law of Total probability, this is

 PBAJPA] P(B1|AuJP[A] 094095
PIANB] = ==prp T = BIB.[AP[A] + P[B: | As]P[As] ~ 0.9% 095+ 0.1 005 ~ 0%

Example 1.23

Monty Hall Game Show: Here is a paradoxical example from the game show “Let’'s Make a Deal.” You know there is a
prize behind one of three doors. You are asked to pick one, which you do: door 1. The game show host, Monty Hall,
opens door number 2 and shows that there is no prize behind that door. He then gives you a choice to keep your original
door, or switch to door 3. Should you switch?

At first glance, the choice seems harmless: There are two doors left, and the prize is behind one of them. It seems like
switching and not switching should give you equal chance of winning. However, during the few seasons of the show, those
that switched wound up winning 2/3 of the time? Why?

Here is a quick explanation: The original door choice had only 1/3 chance of winning. Hence, switching to both of
the other two door choices has 2/3 chance of winning. The fact that Monty opened one of those doors and showed it had
no prize means that choosing the other door has the same chance of winning as choosing both doors, namely 2/3.

Let's analyze this using Bayes' Rule: Sample space 2 = {1, 2,3} corresponding to which door has a prize. The measure
on atoms is P[{1}] = P[{2}] = P[{3}] = 1/3. Let event E; = prize is behind door 1. Let event O be the event that Monty
opens a door that does not have a prize behind it. What is P[E;|O]?

Bayes' Rule: P[E1|0] = %. Here is the source of the paradox: Monty will always open a door that does not

have a prize (or else the game ends!) Hence, P[O] = 1,P[O|E1] = 1. Thus, Bayes’ Rule yields

P[O|E/|P[E,]

P[E,|O] = O]

= P[E1] = 1/3.

which means that not switching wins the prize only 1/3 of the time. Thus, one should always switch!
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Example 1.24

3 factories manufacture batteries for an electric car. However, the batteries from factory one meet the needed specification
only 70% of the time, while the batteries from factories 2 and 3 meet specifications 80% and 85% of the time respectively.
The car manufacturer buys 40% of its batteries from factory 1, 30% of its batteries from factory 2, and the remaining 30%
of its batteries from factory 3.

An outcome of this experiment is the battery that is in the car you purchased. The battery was made by one of the
three manufacturers, and it either met the specification (denote by G), or did not (denote by B). Thus, the sample space
can be described with 6 outcomes, as Q = {1G, 1B,2G,2B,3G,3B}. Let A denote the event that the battery in your car
meets specification. Let B; denote the event that the battery in your car came from factory 4, for i = 1,2,3. Note that
Bi1, B2, Bz are mutually disjoint and collectively exhaustive. Then, using the Law of Total Probability,

3
P[A] = Y "P[A|Bi|P[B;] = 0.7 % 0.4+ 0.8 x 0.3 + 0.85 % 0.3 = 0.775

i=1

AnBnC

1
4

Example 1.25
This is a longer example to show the use of Bayes' Rule and conditional

3 c
probability. There is a new virus infecting smartphones and randomly 3 y AnBnC
compromising some of them. We know that 80% of the smartphones run ADB° 8 y@ anBonc

Android OS, and 20% run a different operating system. Let A denote the

event of phones that run Android, and let A° denote the event of phones AnBenee
that run a different operating system. Let B be the event that the virus ANBNC
infects the phone. We are given that P[B|A] = 0.5, so that P[B°|A] = 0.5

also. We are also given that P[B|A°] = 1/3, because non-Android phones A“nBnce
are less common. AnBENC
Let C be the event that the phone is compromised if it is infected. We A°nBnCe

are given that P[C|A N B] = 1/4. The phone can still be compromised
even if it is not infected! The probability of this is P[C'|A B°] = 1/8. For
non-android phones, the probability that the phone is compromised if it
is infected is P[C|A° N B] = 1/6, and the probability that the phone is
compromised if the phone is not infected is P[C|A° N B¢] = 1/8.

Figure 1.11: Figure for example 1.25.

We can combine all of these probabilities (and their complements) to obtain a complete event diagram that chains
these events appropriately. This diagram is shown in Figure 1.11. For instanced, what is the probability that a phone that
runs Android has no bug but is still compromised? This is P[A N B° N C] = P[A|P[B|AJP[C|IANB®] = 2.1 .1 = L.
Note that this is the product of the probabilities on the branches leading to the end node AN B°NC.

What is the probability that a phone has a virus but is not compromised? That is P[B N C¢]. We can compute this
using the Law of Total Probability, as A and A° form a partition of the sample space. Thus,

P[BN C*] = P[B N C°|AP[A] + P[B N C°|A°P[A%] = PIAN BN C°] + PlA° N BN C7| = — + L = 16,

Given that a phone is compromised, what is the probability that it is an Android phone? We answer this using Bayes’
Rule:

P[A[C] = LCIL%T[A}

Note that B and B¢ are also a partition of the sample space. Using the Law of Total Probability with the conditional
probability P[-|A], we get
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1.3.1 Independence

Independence is an important concept in probability. It is one of the most common assumptions used in
modeling experiments with multiple sources of randomness, and allows for efficient characterization of the
resulting probability measures.

Mathematically, two events A, B in a probability space (€2, £, P) are independent if and only if P[4 N
B] = P[A]P[B]. Independence implies P[B|A] = P[B],P[A|B] = P[4] as long as P[A] > 0,P[B] > 0, because
for any two events, P[A N B] = P[A|B]P[B].

Independence has nothing to do with A, B being mutually exclusive, i. e. having no outcomes in
common. If A, B have no outcomes in common, then P[A N B] = 0, and P[A|B] = 0 also, so it is impossible
for P[A|B] = P[A] as long as P[A] > 0. If A, B are disjoint, knowing that the experiment outcome is
in B implies it is cannot be in A and so this provides information about A, and thus the events are not
independent. Independence is a property of the probability measure P[-] and the specific sets A, B.

If A, B are independent events, then A¢, B are also independent, because
P[A° N B] + P[AN B] = P[B] = P[A° N B] + P[A]P[B]

This implies
P[A° N B] = (1 — P[A])P[B] = P[A°]P[B]

Example 1.26
Consider a simple sample space 2 = {0,1,2,3} with four elements, and define the probability measure on the atoms to

be:
B0} = 2:PI(1)) = B2} = Aipisy = 2.

Define events A = {0,1}, B = {2,3},C = {1, 3}.
Are A, B independent? They are mutually exclusive, so they are not, because P[A N B] = 0.

Are A, C independent? We have to check: P[A] = P[{0}] + P[{1}] = 5;P[C] = P[{1}] + P[{3}] = . P[ANC] =
P[{1}] = 1/9 = P[AJP[C] = %. Thus, they are independent!

The concept of independence can be extended to a finite sequence of sets Ay, ..., A,,, which are mutually
independent if

e Any collection of k of the sets (k < m) A;,,Aj,,..., Aj are mutually independent. item P[A4; N A2 N
o NAR) =P[AP[As] - - P[A,,].

Note that the above concept of mutual independence implies much more than pairwise independence. For
pairwise independence, any two sets A;, A;, i # j, 4,7 € {1,...,m} are independent. It is easy to construct
examples of events which are pairwise independent, but not mutually independent. Mutually independent
means that no subset of the events can be used to predict the probability of occurrence of any of the other
events.

Independence can be tedious to check. Often, as in the above example, it is easier to recognize lack of
independence, as when two events are mutually exclusive. In many engineering applications, we will assume
independence.

Example 1.27

The experiment in this example is to flip a coin twice, and record both faces. The sample spaceisthusQ = {HH,HT,TH,TT}.
Assume the coins are fair, so each atom in the sample space has probability i. Define the following events: A =
{First flip is H}; B = {Second flip is H}; C = {Flips have different outcomes}. Note that P[4] = P[B] = P[C] = 1, as
each of the events has two outcomes.
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Observe the following: P[AN B] = P[{HH}] = ;P[ANC] =P[{HT}] = 1;P[BNC] = P{TH}] = 1. Therefore,
A and B are independent, and B and C are independent, and A and C are independent! Thus, A, B,C are pairwise
independent. However, are they mutually independent?

Note that AN BNC =0, so PIAN BN C| = 0 # P[A]P[B]P[C]. Therefore, the events A, B,C are not mutually
independent.

We now define the concept of conditional independence. Two events A, B are conditionally independent
given event C' if PJANB|C] = P[A|C)]P[B|C]. Basically, this defines independence in terms of the conditional
probability measure P[-|C]. Note the following: two events that were independent in the original probability
measure P[] can become conditionally dependent when a third event C' is observed as true. Similarly, two
events that were not independent originally can become independent given C' is observed.

Example 1.28
We illustrate this concept with a simple encryption example. Assume we want to send a single bit M equally likely to be
0 or 1. We generate independently another bit K, equally likely to be 0 or 1, and we send the message

C=MoK

where @ is addition modulo 2. Thus, if K = 1, the original bit M is flipped. The sample space of these experiments is
Q ={00,01, 10,11} corresponding to possible pairs MK, and P[{ij}] = 1/4,i,5 =0, 1.

Define following events are independent: K; = {K = i}, M; = {M = j}. Note that Ko, M1 are independent.
Consider the event C; = {C = i}.

By construction, Ko and M; are independent, which can be verified by
P[Ko N M;] = P[{00,10} N {10,11}] = P[{10}] = 0.25 = P[K|P[M]
Note that P[Co] = 0.5. Then,

_ P[KonCo] _ P[{00,10} N {00,11}]

PlKo|Col = —prar— = P[Co] -0
P[M:|Co] = P[AI;{E(;;]CO] - Ho 13[6?0]{00’ - 05
_PKonMiNGCo] _ m(@®) _
P[Ko N M:|Co] = P[Co) T P[Co] 0-

which shows that Ky and M; are not conditionally independent given Cj.
Here is another surprising fact: Cy and M; are independent! We show this by computation:
P[Co N M;] = P[{00,11} N {10,11}] = 0.25 = P[Co]P[M,]

You can verify that C; is independent of K, and M}, for any set of choices 4, j,k € {0,1}! What this implies is that
knowing C' alone does not reveal anything about M, hence ensuring the privacy of M. In our simple scale, the possible
weights are {0,1,2,3}. In addition to its bias, the scale has an error measuring a weight which is independent for each
time you weigh the object, and the error has equal probability in {0, 1}.

Example 1.29

Here is an example where two dependent events become conditionally independent. An acoustic microphone is listening to
detect whether a particular sound waveform is present or not. However, the background noise in the room can either be
“loud” or “soft”. The probability that the background is “loud” is 0.5. If the background nose is “loud”, the microphone
will detect the presence of a sound with probability of error 0.4. That is, if the sound is present, the microphone will detect
it with probability 0.6, and fail to detect it with probability 0.4.

If the background noise is “soft”, the microphone will detect the presence of a sound with probability of error 0.2.
The experiment consists of a room with the noise present with background chosen randomly from “loud” or “soft”. The
microphone will try twice to detect the presence of the sound twice, where the errors the microphone makes are independent
for each try., but the background noise is the same in both measurements.
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The sample space in this experiment can be stated in terms of 3 variables: [ or s for whether the background is loud
or soft, di = 0,1 as to whether the first mesurement is a detection, and d2 = 0,1 as to whether the second measurement
is a detection. Thus, the sample space consists of 16 outcomes,

Q = {l100,101,110,111, s00, s01, s10, s11}
Given the description of the experiment, we compute the probability of each atom as follows:
P[{100}] = 0.08; P[{l01}] = P[{pl10}] = 0.12; P[{I11}] = 0.18
P[{s00}] = 0.02; P[{s01}] = P[{s10}] = 0.08; P[{s11}] = 0.32
Note that these add up to 1. Define the event A be the event that the first measurement is a detection, and B

the event that the second measurement is a detection. By combining the atoms that form these events, we compute
P[A] = 0.7,P[B] = 0.7. However, P[A N B] = 0.5, so the events are not independent.

Define the event C' to be the event that the background is “loud”. By construction, P[B) = 0.5. Now,

PlA|C] = % _ % — 0.6
P[B|C] = % — % — 0.6
P[AN B|C] = W _ % —0.36

which shows that A, B are conditionally independent given C, knowledge of the background state. Basically, the dependence
in events A, B arises because they contain the common uncertainty from the same background state. This is removed if
the background is observed so it is no longer uncertain.

Example 1.30
Consider the experiment of selecting an integer from 1 to 4, where each number is equally likely. Consider the events
{1,2},{1,3},{1,4}; Note that the above events are pairwise independent. However,

P[{1,2} N {1,3} N {1,4}] = 1/4 # P[{1,2}].P[{1, 3}]P[{1,4}] = 1/8.

Example 1.31

Mutual independence is a much stronger condition that pairwise independence. For example suppose we were looking for
5 genetic markers in blood samples, denoted by A, B, C, D, E. We are given that the presence of marker A is in 1 out of
every 100 persons, marker B in 1 of 50 persons, marker C' in one of 40 persons, marker D in one of 5 persons and marker
E in one of 170 persons. If the presence of each of the markers was mutually independent, the probability that all the
markers were present in a blood sample is

1 1
100 % 50 x40 * 5% 170 170,000, 000

P[ANBNCNDNE] =

However, if all we knew was that the presence of the markers was pairwise independent but not mutually independent,
then all we can say is

1
P[ANB DNE)XPANE)<
[ANBNCNDNE)<PAN )_177000

Those three orders of magnitude matter!

The concepts of independence and conditional independence are used extensively in this course to con-
struct complex compound experiments. We have already seen this in several examples previously. These
experiments are sequences of sub-experiments, where the later subexperiments depend on the outcomes of
the earlier subexperiments. That is, we are given an initial subexperiment with events of outcomes A;,
defined by probability measure P[A4;]. Then, we define the next sub-experiment with events of outcomes
Bj, defined by conditional probability measures P[B;|A4;] depending on the events observed in the earlier
subexperiments. Note that we can now define a probability measure on the compound experiment with

P[B; N A;] = P[B;| Ai]P[A;]

This is particularly simple when the experiments have discrete outcomes and we define the probability
measures on atoms. We illustrate this below with two examples.
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Example 1.32

We have three factories B; making a product. The experiment will generate a sample product, which may or may not be
acceptable. As a first step, we select which factory will make the product. We describe this by a probability measure over
the atoms of this first step, P[{B;}), with probability 0.3, 0.4, 0.3 for each of the outcomes B1, Bz, Bs. In the next part
of the experiment, the selected factory makes a sample product, which may turn out to be acceptable A or not N. We
describe this with conditional probability based on the factory selected:

P[A|B1] = 0.8, P[N|B1] = 0.2; P[A|Bs] = 0.9, P[N|B,] = 0.1; P[A| Bs] = 0.6, P[N|Bs] = 0.4.

We can illustrate this example with a tree diagram, as illustrated in Figure 1.12. The compound experiment has defined
all the probabilities.

Tree Diagram PIAIB,]=0.8 A eBA 024
P[B,]=0.3 B 07 N BN 0.06
0.9 A eBrA  0.36
B>
0.1 N BN 0.04
B; Lo A eB3A 0.I8

0.4 N B3N 0.12

Figure 1.12: Tree diagram for example 1.32.

Example 1.33

Consider a communication channel where we are going to send a four-bit sequence of bits aiazasas. Each bit is generated
independently from {0,1} with P[{a; = 0}] = 0.4. The bits are input into the communication channel one at a time,
where each bit can be flipped independently by the channel with probability 0.2, or left as is with probability 0.8.

This experiment is illustrated in figure 1.13.

Codewords NoiTe

a 0100
— Encoder ——— | Channel ———>| Receiver
b 1011

Figure 1.13: Illustration of communications channel in example 1.33.

We construct the probability model with a compound experiment. First, we generate the code word as one of 16
possible binary code words in the sample space

Q = {0000, 0001, 0010, 0011,0100,0101,0110,0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}

The probability measure in this space is given by the signal generation: each atom will have probability (0.6)™(0.4)*™"
where n is the number of ones in the code.

Next, we generate the errors in the code word, based on the error description. Given the code word, the probability that
we generate another code word that differs from the current one is (0.8)™(0.2)*~™, where n here refers to the number of
bits that were not flipped in error. Hence, P[{0100}|{0000}] = (0.8)3(0.2) We now have a complete probability model, and
can answer the following question: If one receives 0010, what is the probability that 0010 was the transmitted message?

P[{0010receive}|{0010}transmit]P[{0010transmit}]

P[{0010transmit}|{0010}receive] = P[{0010receive}]
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1.4 Computing probability measures for finite sample spaces with
equally likely outcomes

There are many cases where one assumes that every outcome is equally likely in an experiment. In this case,
the probability of an event A € € can be computed as the following ratio:

PA] = # outcomes in A

# outcomes in

However, we want to avoid enumeration of all the outcomes to figure out the counts! For instance, if we
shuffle a deck of 52 cards, what is the number of possible outcomes, where an outcome is a particular order
of the 52 cards? Fortunately, we know this is just a problem of permutations, and that number is 52!, which
saves us the trouble of enumerating all the card orders! But, consider the event where you are the third
player among 4 players in a game of Bridge, and your hand will be dealt all four aces. How many of the
shuffle outcomes are in this event? That requires far more clever counting.

Unlike some versions of Probability courses, counting is not a major part of this course. However, the
early history of probability up to the 19th century focused on games of chance where counting was the
predominant tool for computation of probabilities. In this section, we review some basic formulas that can
be used for effective counting.

1.4.1 Counting

The first set of formulas for counting involve permutations and combinations. Given a set of n unique
elements, a possible order of these elements is a permutation. The number of possible permutations of a
set of n elements is n!. If we have to select k of these n elements, and order is not important, the number

of unique k element sets that can be chosen out of n elements is (Z), where

(&) === (")

The number (Z) is also called the binomial coefficient. This is because the coefficients in the binomial

theorem are given by
(a+b)" = Z <Z> akpnk

k=0

We will encounter this formula later in this course. For now, it can be used to derive some simple identities

such as
n
n
2" =
> (3)

k=0

obtained by substituting a = b = 1 into the binomial theorem.

Example 1.34

Using the above formulas, we can answer the Bridge question asked earlier: what is the probability that you, sitting as third
chair, will be dealt all four aces? We know the number of possible outcomes in €2, which is the number of permutations
of 52 cards: (52)! To compute the number of outcomes where all four aces lie in the cards dealt to the third chair, we
proceed as follows:

Assume the four aces are in the cards dealt to the third chair. The number of possible orders for the aces among

the 13 cards received by the third chair is (143) (4!), where the first term represents the times you receive an ace, and the

second term represents the order in which the aces are received. This number is thus 41%!!4! = (13)(12)(11)(10). For each
of these possible arrangements of the aces for the third chair, the other 48 cards can be arranged arbitrarily, so there are

48! arrangements of the remaining cards.
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We have just computed the number of card shuffles where the third chair will be dealt all four aces as (13)(12)(11)(10)
48!. The probability that this event A happens when all shuffle outcomes are equally likely is:
(13)(12)(11)(10)48!  (13)(12)(11)(10) (11)

PlA] = 521 = BG)G0@) — anE)@g) ~ 026%

which means that you get all four aces approximately once in every 400 hands (if the dealer is honest.)

Another set of useful counting formulas focus on experiments that are composed of ordered subexperi-
ments. Assume there are r subexperiments, and k' subexperiment consists of n; outcomes (that can be
freely chosen). For instance, you are going to the pet store to buy one of 10 fishes in the small fish tank, one
of the 6 dogs in the kennels and one of the 7 cats in the kennel. What are the total number of fish/dog/cat
outcomes? The general formula is given by:

# of outcomes =nj -ng - N,
which, for the case of fish/dog/cat outcomes, becomes: # of outcomes = 420.

Counting experiments of this type arise, for instance, in dice games with many dice, or coin games with
many coins. If you roll 10 six-sided dice, what are the numbers of possible outcomes? In this case, ny = 6
for each k and r = 10, thus it is 6'°.

Note that in the above count, we keep track of the outcome for each subexperiment. Thus, order
matters in these counts. An implicit assumption is that each subexperiment has outcomes that are selected
independently of each other, which is why the total number of outcomes is the product of the number of
possible outcomes in each subexperiment.

1.4.2 Sampling

Sampling problems are popular problems in early courses in probability. The typical problem considers a
bag with n unique balls (e.g. a lottery urn with 100 numbers). Given that you will take &k balls out of the
bag, how many possible ways are there to take k balls out? We make a distinction as to whether order
matters or not. If order does not matter, this is the simple combination formula we discussed earlier; that is,
the number of possible combinations of k balls is (Z) However, if order matters, then there are more ways:
the right number is k!(}) = (nﬁi'k)'

What if the balls are replaced and put back in, so that the same ball can be taken out more than
once? We refer to that as sampling with replacement. If order matters, then this is the same as running k

subexperiments, each with n possible outcomes, so the total number of outcomes is n*.

If order does not matter, the number of different outcomes is different. It is hardly obvious as to how to
count in this case, as it is not a standard combination. Here is a different way to pose the problem. Assume
there are n distinct items. Let x;,7 = 1,...,n denote the number of times an item appears in an outcome;
note that this is order-independent. If we are to draw a total of k items, we must have z1+a2+...+z, = k

in any outcome. Thus, the total number of outcomes is the number of possible solutions of this equation
where z; € {0,1,...,n},i=1,...,n.

Let’s furthermore represent multiplicities as numbers of ones: Hence, if 2, = 3, then z;, = 111. Similarly,
xz, = 0 would be replaced by z; =, that is, no entry. With this notation, the term xy + x2 + ... + z,, must
be a sequence of length k + (n — 1) composed of exactly k digits 1, and n — 1 + signs! This is the hard part
to visualize: we have reduced the problem to finding n — 1 positions for the + signs out of the k +n — 1
total positions. For instance, if n = 3 and k = 2, the sequence ++11 means z1 = xo = 0,23 = 2. The
sequence 14+1+ means 1 = x5 = 1,23 = 0. Once you understand this mapping, the final answer is just
another combination formula:

—1+k —1+k
# order-independent k£ out of n samples with replacement = (n le ) = <n i + >
n—
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Example 1.35
Suppose we have three balls, one red, one blue and one green. We put them in a bag, and sample them three times with
replacement. How many order-independent sets of colors can be obtained from this sampling?

In this example, the number of draws k = 3, and the number of possible colors (values) is n = 3. Hence, the total
number of order-independent outcomes is

(172 e

For this small example, we can actually list all of the possible outcomes. We list outcome R for a red ball, G for a
green ball, and B for a blue ball. The outcomes are

RRR RRB RRG RBB RBG RGG BBB BBG BGG GGG

We summarize these formulas in Table 1.1:

’ H Order Dependent \ Order Independent ‘

k—1
With Replacement n* <n ! k >
|
Without Replacement ﬁ <Z>

Table 1.1: Sampling formulas

1.4.3 Partitions

Another popular set of examples in elementary probability courses consist of partition problems where we
have n items and we want to divide them into 7 groups, so that the k*® group contains nj elements, such
that ny +n9 + ... +n, = n. For instance, we have 18 basketball players, and we want to divide them into
six teams of three players. How many possible ways of forming teams are there?

This is an extension of the binomial coefficient formula. In that problem we wanted to divide n elements
into two groups, one of size k and another of size n — k. In this extension each element appears in exactly
one group because Y, _; ng = n. The number of ways to form such a partition is given by the multinomial

coefficient
( n ) n!
N1, N9, .e ., Ny nilng! -+ n,!

The way to derive this is to perform sequential selection of combinations: First, select ny out of n. Then
select ny out of the remaining n —n;. Continue this until you select n, out of the remaining n,.. This yields:

(o) = () ) ) ()

n! (n—mnq)! (n—n1 —na)! n,!

ni!l(n —ny)! nal(n — ny — n2)! nzl(n — ng — ny — ng)! n,!
n!

e I E— because of all the cancelations with successive terms.
N1Ngt - Ny

This formula can be used in a generalization of the binomial theorem, as follows:

n
(x1+z2+z3+...+2.)" = Z ( n)l‘?lwgz---x;“

ni+ns+...4+n,.=n 1,702,
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which lead to some nice identities such as
n!
= Z ol [
ni+ns+...4+n,.=n Mg Ny

Example 1.36
Twelve people have a potluck party. Six people will be selected to bring a main dish, four people will bring drinks, and two
people will bring dessert. How many ways can they be divided into these three groups?

We solve this using the multinomial partition formula:

# partitions = <6714?: 2) - % - (12)(11)(1(;) O _ (29)(10)(9)(7) = 13, 860.

Example 1.37

Suppose we have a lottery with numbers from 1 to 59. You are allowed to select five numbers, and you can choose the
same number more than once. What is the probability of winning? Note that the numbers you select must be picked in
the same order as the lottery to win.

What are the number of ways that five numbers can be chosen by the lottery? This is order-dependent sampling with
replacement, so the formula is:
59° = 714,924, 299.

Your chance of winning is one in 714,924,299.

If we only allowed selection of a number once (instead of putting the selected number back in the lottery urn), we
would be doing order-dependent sampling without replacement, so the answer is

59! 59 x 58 x 57 x 56 x 55
541 =

which increases your chances of winning a little bit.

600, 766, 320

Example 1.38

Assume you have a perfectly shuffled deck of cards. If you draw five cards, without replacement, what is the probability
that exactly three of the five are kings? Note that this is not order-dependent. To answer this, we compute the number
of five card hands with exactly three kings. The three kings must be chosen from four possible kings, and the other two
cards chosen from 48 non-king cards. This gives the number of hands with three kings as (g) (428). The total number of

five card hands, with replacement, is (552). Then,

44847 4512
P[{Choose exactly 3 kings in five cards}] = =577 = = 0.001736.
S2LA009.05 ~ 9598060

Here is another common example used to surprise a class.

Example 1.39 sest

In a class with k students, assuming that each student was equally likely to be born plot  1- ;6;

in one of the 365 days in a regular calendar year, what is the probability that two or

more students share a birthday? Plo

Sometimes, it is easier to compute the probability of the complement of an event. In 1o —
this case, we compute the probability that no student shares a common birthday. The

number of ways to select k birthdays uniquely are (S%E'k)' The total number of ways

to select k birthdays is 365°. Hence, the probability that k students do not have a
birthday in common among any two of them is

365!
(365—k)!

P[{No common birthday in k students}] = 360K

Then, the probability that at least two students share a common birthday is
365!
(365—k)!
365k
Note that this quickly approaches one! For k = 64 this is approximately 0.997. Our class size is bigger. For k£ = 100, the
probability is 0.9999997, nearly 1. The curve of how the probability grows with & is shown in Figure 1.39.

P[{At least two students share a common birthday among k students}] =1 —
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1.4.4 Independent Trials

Up to now, we have assumed that every outcome was equally likely, and therefore we would compute
probabilities by counting the number of outcomes. Jacob Bernoulli developed an extension for this were an
experiment consisted of multiple identical, independent subexperiments, each with two possible outcomes
(e.g. win or lose). However, the probability of an outcome in each subexperiment was unbalanced: the
probability of winning was different than the probability of losing.

We refer to these subexperiments as Bernoulli trials. A Bernoulli trial is a random experiment with two
outcomes, say “win” and “lose”, where we define the probability of “win” as a number p € [0, 1] and the
probability of “lose” as 1 — p. For instance, a Bernoulli trial might be the outcome of a coin toss, where
“heads” corresponds to “win”.

If an experiment performs n independent Bernoulli trials, how many possible ways are there to get a total
of k “win” outcomes? This is a combination problem, were we are going to select the k positions that have a
“win” outcome among the n trials, and that is (2) However, what is the probability of each of those combined
outcomes? In each of those combined outcomes there are k subexperiments that resulted in “win” and n — k
subexperiments that resulted in “lose”. Since these are independent subexperiments the probability of each of
those outcomes is p*(1—p)"~*, as the probability for the combined outcome is the product of the probabilities
of each subexperiment. Hence, the probability of the event {k “win” outcomes in n Bernoulli trials } is the
sum of the probabilities of each outcome in the event, which is

P[{k “win” outcomes in n Bernoulli trials }] = (Z)pk(l —p)nF

This distribution, discovered by Bernoulli, is termed the binomial distribution.

Example 1.40
You have a biased coin, such that “heads” occurs with probability 0.6. If you flip the coin 10 times, what is the probability
that you have a total of 4 “heads” outcomes? Applying the above formula yields

10

P[{4"“heads” out of 10}] = <4

)0.640.46 ~ 0.1115.

Let’s generalize the above result. Suppose that, instead of having two outcomes each subexperiment has r

possible outcomes aq, ..., a, with probabilities p1, ..., p,. We want to conduct n independent subexperiments
and count the number of outcomes of each type. That is, we want to count the total number of outcomes
ny of ay, the number of outcomes ns of ag, ..., and the total number of outcomes n, of a,. We know that

the total number of partitions of n outcomes into r classes with ng outcomes of class k is <n1 nz"m n ) What

is important is that each of those partitions has the same probability because of the independence of the

subexperiments: py*ps? ---prr. This yields the following formula for the probability that, when we run n
subexperiments, we will get n; outcomes of ay, no of as, ..., n,. of a,:
n
P[{nl occurrences of aq,...,n, occurrences of ar}] = < >p71“ ceept
niy,N2,..., Ny

Example 1.41
| have a game with three outcomes: win, lose, draw. The probability of win is 0.4, lose 0.5, draw 0.1. If | play 10 times
with independent outcomes, what is the probability of 4 wins, 4 lose and 2 draw?

. _ [ 10 4 raq g2 _ 10! 1 _ 10)O)E)(M)(©6)(5) _ (7)) _
Plwin 4, lose 4, draw 2 of 10] = (4747 2) 0.470.570.1° = 14121 (2500)(25) —  (48)(2500)(25) (50)(25) 0.0504
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Example 1.42

In a wireless channel, bits are flipped independently in error with probability 0.01. If you transmit 100 bits, what is the
probability that 3 of them are flipped?

P[{ 3 of 100 bits are flipped}] = (12()) (0.01)*(0.99)°" ~ 0.061.

For the same example, if we have an error correcting code that can correct up to three bits in error, what is the probability
that all bits are recovered without error? This is the probability that no bits are flipped, plus the probability that one bit
is flipped, plus the probability that two bits are flipped. That is,

P[{ All bits recovered}] = <180> (0.99)"° + <1(1)0> (0.01)(0.99)% + (1(;0) (0.01)%(0.99)% + <120> (0.01)*(0.99)°"

~ 0.982.



Chapter 2

Discrete Random Variables

2.1 Random Variables

A random variable is similar to a function; indeed, the most common definition of a random variable is a
function which assigns a value in the space of real numbers R to each outcome in €. Recall that functions
can assign only one value to each outcome.

Definition 2.1
A random variable X in a probability space (Q,&,P) is a function X : Q@ — R, such that, for any interval (a,b), the set
{w € Q:a < X(w) < b} belongs to the event space £.

By constraining random variables to functions where the inverse image of an interval (a,b) is an event
in £, we can compute P[{w € ©: a < X(w) < b}]. As we discussed earlier in 1.8, the smallest o-field in
that contains the open intervals (a,b) is known as the Borel o-field B. Using limits and the continuity of
probability measures, we can then compute for any Borel set A € B, the probability P[{w € Q : X(w) € A}].
That is, the inverse image using the function X (w) of any Borel set A will be an event in £. In a more
formal mathematical definition, we such functions measurable functions from (Q2,&) into (R, B). Figure
2.1 illustrates the concept of a random variable.

Random variables provide a useful abstraction in probability. First, by assigning numbers to outcomes,
they allow us to map outcomes onto a quantitative scale, which will allow us to compute interesting statistics.
More important, they allow us to recognize that many different experiments give rise to the same type of
random variables, and thus can be analyzed by a common methodology without worrying about the individual
details of the experiments. For instance, we discussed in the previous chapter the concept of Bernoulli trials
as an experiment with two outcomes. That experiment can be a coin flip, a race between two people, a bet,
a roll of a pair of dice to get a total of 7, a shot at a target, etc. By mapping one outcome to the number
1, and the other outcome to 0 we get a Bernoulli random variable. Thus, the analysis of Bernoulli random
variables provides the tools for analysis in all the diverse experiments that give rise to such random variables.
Similar abstractions will allow us to use a common set of random variables to analyze measurement errors
that arise in acoustic, aerospace, electronic and biomedical measurements.

Sample
space

X1 X X R

k outcomes

Discrete Random Variable X:
Range of X is discrete

Figure 2.1: Discrete random variables map §2 into a discrete set of values in the real line.
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We introduce some notation that we will use throughout the book: We use capital letters (e.g. X,Y, Z)
to denote random variables, and we use lower case letters *(e.g. ,y, 2) to denote the values that a random
variable takes.

We denote by Rx the image of the sample space Q (the range) as mapped by the random variable X (-).
That is, Rx C R is the set of possible values of X (w),w € Q.

Definition 2.2
A discrete random variable in a probability space (2, £, P) is a random variable X such that the range of X, denoted
by Rx = X(2), has at most a countable number of elements.

We sometimes make a distinction to refer to a random variable as finite if Ry has a finite number of
elements. Random variables that are not discrete can be either continuous or hybrid as described in the next
chapter.

Example 2.1

Turn on a light source, and use a CCD detector to count the number of photons that hit the detector in an interval of
one second. In this experiment, Q = {0,1,2,...}. We define the random variable X (w) = w, as the outcomes are already
numeric. The range Rx of this random variable is Rx = {0,1,2,...}. X is a discrete random variable, as its range is
discrete.

Example 2.2

Turn on a light source, and have a CCD detector that measures the time between the arrival of the first photon and the
arrival of the second photon. In this experiment, Q = [0, c0). We define the random variable X (w) = w, as the outcomes
are already numeric. The range Rx of this random variable is Rx = [0, c0), which is not countable. This random variable
X is not a discrete random variable.

Suppose we define a different random variable Y (w) as follows:

Y () 0 w < 2ns,
w) =
1 elsewhere.

In this case, the range Ry = {0, 1}, which is finite, so Y is a discrete random variable.

Most card experiments, dice experiments and coin flip experiments give rise to discrete random variables.
We list some examples of discrete random variables below.

e The number of X-Ray photons detected in a pixel by an X-ray radiograph.
e The number of defective parts in a manufacturing process in 10 minutes.

e . The presence of a disease in a patient.

e The correctness of a software implementation of an algorithm.

e The number of parts that fail in an automobile in the course of a year.

Typical examples of random variables that are not discrete are the time until a part fails in an assembly
plant, the error in location given by a GPS system, the error in measuring the distance to an obstacle using
a LIDAR sensor and the time of arrival of customer at a service station.

A random variable X induces a probability measure Px on (R, B) using the function mapping. For any
intervals (a,b) € R, this probability is given by

Px((b,a)) =P{w e Q:b< X(w) < a}]
and, more generally, for any set B € B, we have

Px(B) =P[{w € 2: X(w) € B}].
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Indeed, with this induced probability, we can show that (R, B,Px) is also a probability space. We call
this space the sample space. The abstractions that random variables provide will allow us to use the same
induced probability space for many different random experiments.

Example 2.3
Consider the experiment of tossing two unbiased coins. In the original space €2, there are four outcomes: HH, HT, TH and
TT, where H denotes a heads outcome and T denotes a tails outcome. We define a random variable X as follows:

X (w) —1 ifs#HH TT.
w) =
1 otherwise.

In this experiment, R, = {—1,1}. The induced probability Px can be defined on its atoms, so that Px[{1}] = P[{w €
Q: X(w) =1} =P{HH, TT}] = 0.5. Similarly, Px[{—1}] = 0.5.

Now, consider a second experiment, consisting of tossing a single unbiased coin, with sample space Q; = {H,T'}, and

define variable Y as
-1 fw=H
Y(w) = { if w

1 {textotherrwise.

The sample space and induced probability of this random experiment and random variable Y are the same as those of
the first experiment and random variable X. Rather than treating these random variables a different, by using the sample
space, we can treat them as identical random variables.

2.2 Discrete Random Variables

Consider a probability space (§2,&,P), with a discrete random variable X defined on it, with values in
{21, x2,23,...}. Since every set {x;} containing a singleton value is a Borel set, we can compute the prob-
ability P{w € © : X(w) = x;}]. We can use this to define the induced probability measure Px on Rx. We
define this formally next.

2.2.1 Probability Mass Function

Definition 2.3
The probability mass function of a discrete random variable X defined on a probability space (22, &, P), taking values
in {z1,x2, s, ...} is the function Px(z;) = P[{w € Q: X(w) = x;}].

To keep the notation simple, we refer to the set {X = z1} = {w € Q: X(w) = x;}. Thus, we will write
equivalently the following forms for the probability mass function of a discrete random variable:
Px(z) =P{w € Q: X(w) =z} =P{X =z}] =P[X =z].

In each case, it should be clear that this is computing the probability of an event A € £ defined all possible
solutions of the equation X (w) = x. Figure 2.2 illustrates a probability mass function for a discrete random
variable.

The probability mass function (PMF) of a random variable X satisfies the following basic properties:

1. Non-negativity: Px(z) > 0 for all .

2. Normalization: Z Px(z) =1.
rERXx
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1[" Probability Mass Function PX(x)

Discrete /)

Random Variable P[{X = x,}]
X PI{X = x5}
PIX = xi}]
0 X1 X5 X

Figure 2.2: Illustration of a Probability Mass Function.

Pl{@: X@€BH = ) Pe(x)
B {xeB}

Figure 2.3: Computing the probability of events using the PMF.

3. Additivity: For any subset B C Ry, the probability that X falls in B is

Px[B] =P{w e Q: X(w) € B} = > Px(x)

Note that Px[B] implicitly refers to the event Px[B] = P[{X € B}].

The Additivity property follows because the event {w € Q : X(w) € B} can be decomposed into disjoint
events {w € Q : X(w) = z;} for each z; € B. These events are disjoint because X (w) is a function and
thus can only assign a single value to each w € 2. Then, the countable additivity property of the probability
measure shows

Plwe: X(w) € BY] = ) P{we: X(w) =Y PloeQ: X(w =Y Px(x)

rEB rzeB zeB

Figure 2.3 illustrates the approach at computing probabilities of events using the additivity property of
the probability mass function. Any event in Rx will contain discrete elements x; on which the probability
mass function is defined. The induced probability of the event is the sum of the probability mass function
on the elements that are in B.

Example 2.4

In this experiment, we roll two four-sided dice, with all outcomes on each dice being equally likely. Note that these dice
are tetrahedral, so the number that a die rolls is the number at the bottom. We define the random variable X to be the
sum of the numbers at the bottom of the dice.

The sample space is Q = {(¢,7) : 4,5 = 1,2,3,4}. The image Rx = {2,3,4,5,6,7,8}. Since this is a discrete set, we
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compute the PMF as:
1
Px(2) = PI{(1,)}] = 1

Px(3) = P[{(1,2), (2, )}] =

"8
Px(4) = P[{(1,3),(2,2), (3, )}] = 1%
Px(5) = P[{(1,4),(2,3),(3,2), 4, 1)}] = i
3
16

PX(G) = P[{(274)7 (37 3)7 (47 2)}} =3z
Px(7) = BI{(3,4), (4,3)}] = 5

Px(®) = PI{(1, )] =

Using this, define the event B = {X is even }. Then,

Px[B] = Px(2) + Px(4) + Px(6) + Px(8) = 1% - %

Define the event C' = {X is a multiple of 3 }. Then,

Px[C} = Px(?)) +Px(6) = %
Example 2.5
In an experiment, we have a biased coin with two outcomes, H and T, with probability of H = p > 0. We are going to
toss that coin an infinite number of times, so that an outcome of the experiment is an infinite sequence of Hs and Ts;
e.g. HHHTHTTHTHHHTTTTTH. ... The outcomes of each coin toss are independent, so this defines the outcomes in
the original probability space as well as the underlying probabilities, e.g. we have (©2,&,P). On this probability space, we
define a random variable X (w) for an outcome w € § as the position of the first H in w. That is, X(TTHTHT...) =
3, X(THTTH...) = 2, etc. Note the possible values of X are discrete and countable. Find the probability mass function
Px (z), and compute the induced probability of the event B = {X (w) € [2, 3]}.

We note that all outcomes for X (k) = 3 have to start with TTH, and the rest of the outcomes after the first toss
result in the same X (k). Using this reasoning, we can derive

Px(z)=p(1—p)" "z=1,2,....
The induced probability Px [B] = P(2) + P(3) = p(1 — p) + p(1 — p)? = p(1 — p)(2 — p).

Random variables of this type are called geometric random variables, because of the geometric decay of the PMF as =
increases.

Example 2.6

This example shows we don't need to know anything about the underlying experiment if we know the probability mass
function to compute probabilities for events defined in terms of the random variable. Assume Rx = {1,2,3,4}, and let
the probability mass function be P(x) = £ for some ¢ > 0. Find the value of ¢, and find the probabilities of the events
A={X >2}and B={X < 3}.

We use the normalization property to compute ¢, since
PL)+P2)+PB)+PA)=c+-+-+-==—"c=1.

Hence, ¢ = 12. Next, we compute Px [A] = P(2) + P(3) + P(4) = 32, and Px[B] = P(1) + P(2) = 1.

25

2.2.2 Cumulative Distribution Function

The cumulative distribution function (CDF) of a random variable X in a probability space returns the
probability that a random variable X is less than or equal to a value z:
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Cumulative Distribution Function FX(X)

i+ Probability Mass Function Py(x) 1+ m)
Pylx3)
Px(x2)
P x\X2
Px{x1) ) Px(x3) 1
Pxlx) Py(x1)
0 X1 X X 0 X1 X Xk

Figure 2.4: Relationship between the PMF and CDF of a random variable.

Definition 2.4 (Cumulative Distribution Function)
The Cumulative Distribution Function of the random variable X is defined as the function Fx : ® — [0, 1] which
satisfies:

Fx(a) =Px({X € (—o0,a}]) =P{w € Q: X(w) < a}].

We will sometimes use the notation F(a) instead of Fx (a) when it is clear which random variable we are
referring to. In particular, for a generic argument, this is often written as Fix(z) or just F(z).

Figure 2.4 shows the relationship of the PMF and the CDF. In essence, the CDF is the sum of the PMF
starting from the left at the smallest value of x € Rx.

The CDF is a non-negative real-valued function Fx(z) € [0,1], defined for all real values of its ar-
gument z € K. The CDF of any discrete random variable is a staircase function. If X takes on val-
ues x1,xs, ..., with probabilities P(x1), P(x2), ..., P(zk), then the CDF has jumps at x1,xs, ...z, with
heights P(z1), P(z2), ..., P(xzx) and is flat in between the jumps.

Cumulative distribution functions have the following properties:

1. Fx(00) =lim, 00 Fix () =1, Fx(—00) = limg;—, oo = 0.

2. a < b implies that Fx(a) < Fx(b), so F(z) is non-decreasing in z.

3. Fx(z) is piecewise constant and jumps at values of € Rx C R such that P(z) > 0.
4. For all b > a,Px[{a < X <b}] = Fx(b) — Fx(a).

5. lim, o+ Fx(a+¢€) = Fx(a) (continuity from the right)

Proof: The first properties follow from the continuity of probabilities. Define the events as A, = {w € Q:
X (w) < n}. These form a non-decreasing sequence, so by Lemma 1.1

lim P[A4,] = lim F(n) =PU32,4,]=P[Q] =1
n—oo n—r oo
Similarly, the sequence B, = {w € Q : X(z) < —n} forms a non-increasing sequence with an empty
intersection, so
lim P[B,] = lim F(-n)=0

n—oo n—oo

The second property follows from the fact that {w € Q@ : X(w) < a} C {w € Q: X(w) < b}. The final
property can be shown as follows: Define the sets A, = {w € Q|X(w) < a+ 1/n}. Again, these sets are
non-increasing, so

lim P[A,] = lim F(a+1/n) =PN52,A,] = F(a)

n—oQ n—oo
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Example 2.7
Consider the example 2.4 with two quadrilateral dice. The CDF of X is given by:

0 T < 2
1 .
6 2<1<3;
3 .
16 3§l‘<4,
3
2 4<zx <5
Fx(x)=4q% ._ ’
13 .
15 .
1 8<u.

Thus, the CDF is piecewise constant, and jumps at each integer value in Rx by the amount P(z).

In general, cumulative distributions of a random variable are not very useful for computing statistics.
Almost every computation uses the probability mass function instead. So why do we bother with defining
CDF's and their properties? Recall that, in chapter 1, we constructed many cases where the probability of
every atom is zero. For those cases, such as those involving continuous random variables, it is impossible to
define a PMF. However, the concept of CDF applies to all random variables, continuous or discrete, and has
nearly the same properties in all cases.

2.3 Statistics of Discrete Random Variables

We are used to seeing sample statistics in many different fields. In data science, samples are collected by
repeating the same experiment independently many times, and generating the random variables associated
with each of these experiments. Social statisticians work hard to select samples that correspond to the true
population at large. Given a set of sample values for a random variable generated this way, a sample statistic
maps these values into a single real number.

For instance, suppose the experiment is a student in EK 381 taking a midterm exam. The random
variable maps the student answers into a number grade. If 80 students take the same exam, this can be
viewed as repeating the experiment of selecting a student randomly 80 times and getting a value for the
random variable. We assume the grading is done in whole numbers from 0 to 100, so the possible values for
the random variables are discrete.

The first class after every exam, the professor is asked the same question: “What was the class average?”
The class average is an example of a sample statistic. If x;,7 = 1,..., N are the values of the random variable
X in N repetitions of the same experiment, the sample average or sample mean is defined as:

1 N
mx = Nzlxl
i=

Similarly, the sample variance is defined by Var[X] = % Zil(xl — mx)?, and the sample standard

deviation is computed as ox = y/Var[X]. However, note that those statistics will change as N changes.
In essence, they are random also, in a manner that will be made more precise later in the course. What
we hope is that, as N grows, the statistics approach a limit and become constant, and thus represent an
intrinsic property of a random variable.

There is another way to write the sample statistics, in terms of a sample probability mass function P(z).
In essence, compute a sample probability mass function as:

_ 1 &
Px(z) = NZI[@ = x]
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where I[x; = z] is the indicator function that is 1 if it is true, and 0 otherwise. This computes the relative
frequency that the value x appears in the sample of size N. Then, using the sample probability mass function,
the sample statistics can be written as:

mx = Z PX(az)x

rxERXx

Var[X] = Z Px(x)(x —mx)*
T€ERX

and ox = +/Var[X].

This new form suggests that each random variable has a true statistic that can be defined in terms of its
probability mass function. The sample statistics are random approximations of these true statistics.

Definition 2.5
A statistic of a discrete random variable is a map from its probability mass function to a real-valued quantity.

Below we define some of the most common statistics associated with discrete random variables.

2.3.1 Expected Value

The expected value of a discrete random variable X is defined as

EX]= > xPx(x).

rzERXx

This is also known as the mean or average. In these notes, we also sometimes use px = E[X].

The expected value has many interpretations: It is the weighted average of all possible values, using the
PMF weights. It can be viewed as the center of “mass” of the PMF. Ideally, it would also be the sample
average after one performs a large number repetitions of the experiment (to be substantiated later in this
course): the sample mean should approach the true mean as number of samples increases!

Example 2.8
Consider the two quadrilateral dice example 2.4. Then,
1 1 3 1
E[X] = sumgzeryx Px(x) =2 - E+3~§+4- 16 —1—5-Z
3 1 1 80

Note that, for some random variables where the range Rx is infinite, the expected value cannot be defined
because the sum may not be finite! This is illustrated in the examples below:

Example 2.9
Assume we have a discrete random variable X with range Rx = {1,2,...} and PMF given by Px (k) = 25,k =1,2,....

k272

2

. . - . . . . — 1 .
It is easy to verify that this is a valid PMF, as it is non-negative, and normalized properly because Z =i % This
k=1

formula was derived by Leonard Euler in the early part of the 18th century. For this random variable, note that

oo

6 k 6 =1
EX|=) S = mr =
k=1 k=1

Thus, for statistics defined using expected values, it is possible that the statistics won’t be defined if the
required sums do not converge.
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Example 2.10

We consider a signaling example where we want to transmit a single bit using a DC voltage. If the bit is 1, we transmit a
voltage +1 volts. For the bit being 0, we transmit the voltage -1 volts. Assume that the bit is equally likely to be a 0 or a
1.

We construct the sample space for the experiment as Q = {0, 1}, the value of the bit. We define the random
variable as the voltage X(0) = —1,X(1) = 1, so Rx = {—1,1}. The probability measure in the original space is
P[{0}] = P[{1}] = 0.5. The resulting PMF is given as

Px(=1)=05; Px(1)=05.
Using this, we compute E[X] =0.5-(—1) 4+ 0.5 (1) = 0.

Assume that we wanted to transmit two bits at a time. In this case, the sample space © = {00, 01, 10,11}, with each
outcome having probability 0.25. Now, we define a new random variable Y corresponding to the voltage used for signaling,
so that Y(00) = —3,Y(01) = —1,Y(10) = 1,Y(11) = 3.

The range space Ry = {—3,—1,1,3}. The induced PMF is Py (—3) = Py (—1) = Py (1) = Py(3) = 0.25. Then,

E[Y]=0.25- (—3) +0.25- (—1) + 0.25 - (1) + 0.25 - (3) = 0.

Thus, the two signaling schemes X,Y have the same expected value 0. However, they will differ in other statistics,
such as average energy, where you can expect that the energy is proportional to X2 or Y. To do this, we need to be able
to compute averages of functions of random variables such as X?2.

2.4 Functions of a Random Variable

Consider a random variable X defined on a probability space (2, &, P). X is a function mapping outcomes in
Q into real numbers in . Suppose we now define another function g(-) mapping a real number into another
real number (e.g. g : R — R.) Then, the composition of the two functions, g(X(w)) also maps outcomes
in  into real numbers in R, so that each outcome is only mapped into a single real number. That is, the
composition of the two functions is also a function. As long as the function g(-) is well behaved (measurable in
the context discussed earlier), this composite function also defines a random variable in (2, £, P)! We denote
this random variable as Y = g(X) to indicate that the variable Y is derived by a function transformation of
the random variable X, and the underlying random variable map Y (w) = g(X (w)).

Note that this raises an interesting observation: we can define multiple random variables on the same
probability space. We will explore this fully in later chapters. For the moment, let’s focus on the case where
Y(w) = g(X(w)). This case is often referred to as a derived random variable.

What is the range of Y as a random variable? It is derived from the range of X: Ry = {g(z) : x € Rx }.
If X is a discrete random variable, then Ry is a countable, discrete range, and therefore Ry will also be at
most countable and discrete. Note that Rx is countably infinite does not imply Ry will be, as the function
¢(+) may map many numbers in Ry into a single number in Ry. For example, consider the function g(-)
defined below that maps {1,2,3,...,} into {0,1}:

1 if x is an odd positive integer
g(x) =
0 elsewhere

If we know the function g(-) and the probability mass function of X, Px(z), we can compute the proba-

bility mass function for Y directly as Py (y) = Z Px (x), where the notation )
z:g(x)=y

each value of x € Rx such that g(x) = y is satisfied. This is exactly the same approach we took to computing

the probability mass function Px(x): The event {Y = y} has an inverse image through the function g which

is composed of a subset of Rx, which is {x € Rx : g(x) = y}. Since Rx is discrete, this is a discrete set,

z:g(x)=y means sum over
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and
Py(y) =Px({r € Rx :g(z) =y}) = > Px(@).

z:g(x)=y

As long as we have the properties of X, as summarized by its probability mass function Py, we can
compute all the properties of Y without having to refer to the original probability space (2,&,P). We
illustrate this with examples.

Example 2.11
Consider a discrete random variable X with values in Rx = {1,2,3,4} and probability mass function

Px(z) = 1/3 =<2
TNV 16 2> 2

Let g(z) = x> be a function, and define Y = ¢(X) as a derived random variable. In this case, the range of Y is
Ry = g(Rx) = {1,8,27,64}. The probability mass function of Y is now

P = 3 PX(m)_{l/S y <38

wio @y 1/6 y>38

Now, let's repeat the exercise for a different function: let h(z) = 0 for z < 3, and h(z) = 1,z > 3. Define Z = h(X)
be the resulting derived random variable. Then, Rz = h(Rx) = {0, 1}, and the resulting probability mass function is

_ . Px(1)+Px(2)+PX(3):5/6 z2=0
Pr(z)= Y Px(x){PX(4)_1/6 .

z:h(z)=z2

Example 2.12
Consider now the signaling example 2.10. Let U = X2. Then, U(—1) = 1,U(1) = 1, so Ry = {1}. Hence, Py(1) =
Px(—1) + Px(1) = 1. Hence, E[U] = 1.

Define V =Y?. Then, V(-3) =V (3) =9,V(-1) = V(1) = 1. Thus, Ry = {1,9}, and Py (1) = Py (~1)+ Py (1) =
0.5; Pv(9) = Py(—3) + Py (3) = 0.5. The average is:

]E[V] = IP\/(I) =+ 9P\/(9) = 5.

So, on average, signaling with two bits at a time in this scheme takes much more energy than signaling each bit
separately.

For a derived random variable Y, we can compute all of its statistics using its probability mass function
Py (y). However, there is a simpler approach that avoids the need for computation of Py (y). Consider
computation of the expected value of Y (its mean). Using the approach in subsection 2.3, we compute E[Y]

= Y yPr(y)

YyERy
However, note that, using the definition of Py (y)
Y] =X v =2 v > Pxle
YERy yeRy wig(z)=y
=y Z (since y = g(z) )
YERy z:g(z)=

= Z g(x)PX(x) (since g is a function, and every x € Rx is mapped into some y € Ry)
TE€ERX

Thus, we can compute E[Y] directly using the definition of the function g(-) and the probability mass
function Px without having to compute Py .
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Example 2.13
Back to the signaling example 2.10, we compute directly:

E[Y?] = (=3)*Px(=3) + (=1)*Px (1) + (1)*Px (1) + (3)*Px(3) = 5.

Let’s focus now on a special class of functions: affine functions g(z) = ax +b. Let Y = g(X) = aX + b.
Then,

E[Y] = Z g(x)Px(z) = Z (azx + b)Px (x)

TERX TERX
=a Z xPx(z)+b Z Px(x)
TERX TE€ERX

=aE[X]+b (using the definition of E[X] and the normalization property of Px.)

Thus, when a random variable Y is defined by an affine transformation of a random variable X, its
expected value is computed by the same affine transformation of the expected value of X, avoiding having
to do any summations over Py.

An important statistic that we use to characterize the randomness in random variables is the variance.
The variance measures how spread out a random variable is around its mean, and is defined by

Var[X] = E[(X - E[X])Q} = Y (& ux)’Px(@).

Note that E[X] is a number, not a random variable. Hence, Z = (X — E[X])? is transformation of the
variable X. The variance of X is often referred to as 0% = Var[X], where o is the positive square root of
the variance of X, and is known as the standard deviation.

Example 2.14
Let X be a random variable, with Rx = {1,3,5} and PMF Px (1) = Px(3) = Px(5) = 5. Then,

E[X] = (1)Px (1) + (3)Px(3) + (5)Px (5) = 3.
Var[X] = (1 —3)°Px(1) + (3—3)°Px(3) + (5 — 3)°Px (5) = ;

The standard deviation is ox = /3.

There is an alternative formula for computing the variance of a random variable which is Var[X] =
E[X?] — (]E[X])2 We can show this as follows:

Var[X] = (¢ — ux)*Px (x)

rERXx

= > (2° = 2wpx + px) Px ()
rERXx

= Y 2®Px(z) -2 Y apxPx(x)+ Y px)Px(z)
TERX rE€RXx TERX

= Z 22 Px (z) — 2px Z 1 Px (x) + p% sumgepy Px (z)
rERXx rxERXx

= Y @®Px(z) =2k +px = Y *Px(x) —pk
TERX TERX
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where the last line follows from the definition px =
probability mass function sumgeg, Px(x) = 1.

vcry TPx () and the normalization property of the

Assume again we have an affine transformation ¥ = aX + b. We know that E[Y] = aE[X] + b. Can we
compute a relationship for the variance of Y in terms of the variance of X? Reasoning as above, we obtain

Var[Y] =E[(Y —E[Y])?] = > (y—E[Y])?Py(y)

yeRy
= XR: (ax + b —E[Y])?Px (z)

— mGZR:X(ax +b—aR[X] — b)*Px ()
= GZX a*(z — E[X])*Px (z)
vy

Note that the constant b in the transformation Y = aX + b affects the mean E[Y], but does not affect the
variance, because the variance is a measure of the variation of Y about its mean. Notice also that the scaling
factor a is squared in the variance, as the variance is a quadratic statistic. In terms of standard deviations,
we have oy = |a|ox.

To illustrate that the constant b does not affect the variance, consider the special transformation ¥V =
X — E[X], where a = 1 and b = —E[X]. In this special case,

E[Y] = E[X] — E[X] = 0; Var[Y] = E[Y?] = E[(X — E[X])?] = Var[X]
which highlights that the variance of a random variable does not change when it is shifted by a constant.

These results provide a shortcut for computing statistics of derived random variables when the transfor-
mation Y = aX + b is an affine transformation:

E[Y] = aE[X] +b; Var[Y] = a*Var[X]

The above results also highlight an important property of expectations. Suppose the function g(z)
g1(x) 4+ g2(z), and we define Y = g(X) = ¢1(X) + g2(X). In the above linear case, ¢ (z) = ax, g2(x) =
Then,

b.

E[Y] = Z (91(z) + g2(2)) Px (x) = E[g1(X)] + E[g2(X)]

TERX

because the sum is a linear operation, and can be separated into two sums. Also, if Y = ag1(X) + bga2(X),
then

E[Y] = Elagi(X) + bgz(2)] = aE[g1 (X)] + bE[ga()].
Thus, the expectation operator is a linear operator. We will exploit this property throughout the rest of this

course.

There are other useful statistics that can be computed for a random variable X. We list a few below:

e n'" Moment: E[X"] = Z " Px ().

r€ERXx
e n'" Central Moment: IE[(X —]E[X])n} = Z (x — px)"Px(z).
rxERXx

e Median: The median is a number Z,,.q € R such that Px[{X < Zmed}] = Px[{X > Zmed}]. Note
that such a number may not exist and, if it existed it may not be unique. For instance, consider a
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random variable with two possible values, 0 or 1, and Px(0) = 0.1, Px(1) = 0.9. There is no median
for this random variable. Similarly, consider another random variable with four possible values 0, 1, 2,
3, with Px(0) = Px (1) = Px(2) = Px(3) = 0.25. In this case, any number strictly between 1 and 2
serves as a median.

e Mode: The mode of a random variable X is any number x,,,q such that Px (Z04) > Px () for all z €
Rx. Unlike the median, the mode of a discrete random variable must exist, but it may not be unique.
The last example in the previous bullet has four possible values for the mode.

2.5 Important Families of Discrete Random Variables

Many experiments in engineering problems have the same underlying probability structure and give rise to
the same type of random variable. In this section, we discuss several classes of discrete random variables that
arise in many engineering applications. These classes of random variables have probability mass functions
that can be described by a few parameters. Hence, they provide useful models for physical processes, as
those parameters can be readily estimated from available sample data. Learning the properties of these
random variables helps us avoid repetitive calculations.

The classes of random variables we discuss are:

Bernoulli

Uniform

Binomial

Geometric

e Poisson

For each family, we compute its statistics, so that we can avoid tedious summations when we can recognize
the type of random variable involved.

2.5.1 Bernoulli(p) Random Variables

Let A be an event related to the outcome of some random experiment, such as a toss of a biased coin. Define
the random variable X as the indicator function of A as:

0 ifwisnotin A
1 ifwisin A.

Thus, X is one if the event A occurs, and zero otherwise. X is a random variable, with discrete values in
range {0, 1}, and with probability mass function given by:

1-— z=0,
PX(‘T):{ P B
p rz=1.

where p = P[A] in the original probability space. Such a random variable is called a Bernoulli random
variable, since it identifies the outcome of a Bernoulli trial, which is 1 if the event A occurs.

The range of a Bernoulli random variable is Ry = {0,1}. Its CDF is computed as:

0 x <0,
Fx(z)=<(1—p) z€][0,1) .
1 x> 1.
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Note that Fx(x) is defined for all real values of x.

The expected value and other statistics of Bernoulli random variables are easily computed, since Rx only
has two entries:

E[X] =) xPx(z) =0(1-p)+1p=p.
=0

1
E[X? =Y 2*Px(x) =0*(1—p)+ 1’p=p.
x=0
Its variance is computed as

Var[X] = E[X?] — (E[X])2 = p—p? = p(1 — p).

Bernoulli random variables are characterized by a single parameter p, which is easy to estimate from
sample outcomes of the experiment. A summary of their properties is given below.

e X is a Bernoulli(p) random variable if it has PMF

1-— z =0,
Px(w):{ b
p r=1.

Range: Rx = {0,1}.

Expected Value: £[X] = p.

Variance: Var[X] = p(1 — p).

Interpretation: single trial with success probability p.

2.5.2 Discrete Uniform(a,b) Random Variables

Suppose we have a discrete random variable X, with range in Rx = {a,a+ 1,a+2,...,b}, where a < b are
integers, so it can take b — a + 1 values. We assume that the probability mass function Px (z) is the same
for each value x € Rx, so that each of the values is equally likely. In this case, Px(z) = x € Rx, as
there are b — a + 1 possible values, and the normalization property requires )

1
b—a+1"
PX (3;‘) =1.

rERXx

Discrete Uniform(a,b) random variables are used commonly in models of games of chance, such as coin
tosses, roulette wheels, dice rolls, where there is no assumption of bias towards any of the outcomes. The
outcomes in Rx are ordered in increasing order, and are separated by one unit.

We compute the statistics of a Discrete Uniform(a, b) random variable X as follows: Its CDF is given by

lz] —a+1

Fx(z) = b—a+1

where the notation |x| refers to the largest integer less than or equal to z. The expected value of X is

computed as:
b

EX]= ) «Px(x) :Zjﬁ

zERXx j=a

To do this sum, it helps to remember some summation equalities:

n

. n(n+1)
3=t

Jj=1
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Let’s define the derived random variable Y = X — a. Note that Ry = {0,1,2,...,b — a}, and Py(y) =
ﬁﬁ-l’ ES Ry NOW,

b—a
B B 1 B 1 (b—a)b—a+1) b—a
Em*ZyPY(y)*kZ:Okb—aH*b—aJrl 2 =

YERy

For the original variable X, we know E[Y] = E[X] — a, so E[z] = a + %52 = 212,

We can compute the variance of Y as follows: First, we compute E[Y?] as

b—a
1
B = D W
k=0

To sum this, we use another summation formula:

- n(n+1)(2n+1)
k* =
2 G

Since the k = 0 term does not contribute to the sum (k% = 0) , we get:

s L, b—a)b—a+1)(2b—a)+1) (b—a)2(b—a)+1)
E[Y]:;Okb—a—klz 6(b—a+1) - 6 '

We compute the variance Var[Y] as

Var[Y] = E[Y?] — E[Y]? = (b— a)(2(2 —a)+1) (b —4a) _ 4(b—a)* + 2(b1; a)—3(b—a) _ - a)?2— a+2

Since Y = X — k, we know Var[Y] = Var[X].

Uniform random variables are characterized by two parameters, k and n. Their properties are summarized
below:

X is a Discrete Uniform(a,b) random variable if it has PMF

1

Px(z)=<b—a+1
0 otherwise.

r=a,a+1,...,b

Range: Rx = {a,a+1,...,b}.

e Expected Value: £[X] = a _2|_ b_
_ — 2
e Variance: Var[X] = (b a)(11)2 a+ )

Interpretation: equally likely to take any integer value between a and b.

2.5.3 Binomial(n,p) Random Variables

Suppose that a random experiment with a binary outcome of success or failure is repeated n times. Let z
denote the number of times that such an experiment was a success. In terms of the notation used above in
the context of Bernoulli random variables, let A denote an event, and let z denote the number of times that
such an event occurs out of n independent trials of the same experiment. Then, X is a random variable with
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discrete range {0,1,...,n}. Define the parameter p to be the probability of success in a single trial of the
experiment, as in Bernoulli random variables.

A simple representation of X is given by
X=L+DL+...+1,, (2.1)

where I}, is the indicator that event A occurs at the independent trial k.

We have seen this problem worked out in Section 1.4.4. The probability of any outcome with k successes
out of n is p¥(1 — p)"~*. There are (Z) outcomes with k successes. Thus, the probability mass function of
X is given by

Px() = Fl{w € 2 X(0) = k)] = (1 )ph0 ="+ = et

Thus, the CDF of X is given by

where |z is the largest integer that is less than or equal to .

Binomial(n, p) random variables arise in various applications where there are two types of outcomes, and
we are interested in the number of outcomes of one type. Such applications include repeated coin tosses,
correct/erroneous bits, good/defective items, active/silent stations, etc. The important statistics of binomial
random variables are derived below:

_ k n—k
=2 - k),kp (1-p)
2 n!
=> prL—p)"t
= (k—1)l(n —k)!
-1)
_ nPZ n—k)'pk—l(l — p)"F (factor np from sum)

(n—1)! k—1 n—1—k' .
=np Z ) —1— &) 07 (1—-p) (substitute k' = k — 1)

because the terms in the sum are the PMF for a Binomial(n — 1,p) RV, which add to 1 by normalization.
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Similarly, to compute the variance of X, compute first the following expectation:

k=2
- n! -
:k-zzz(k*2)!(n,k)|pk(l—p) k

=n(n—1)p? Z Mpk_z(l —p)"~* (factor n(n — 1)p? from sum)

_ | _ |
Pt 2)!(n — k)!
n—2
- 2)! ,
= nin =D (ld)!((Z—z)—Mka(l —p)" 77" substitute k' =k — 2
k'=0
=n(n— 1)p2

because the last sum is again the sum of the PMF of a Binomial(n — 2, p) random variable, which is 1 by
normalization.

Note now that E[X (X — 1)] = E[X?] — E[X], so E[X?] = E[X(X — 1)] + E[X] = n(n — 1)p*® + np. Now
we use the identity

Var[X] = E[X?] - (E[X])? = n’p* — np® + np — n*p® = n(p — p*) = np(1 — p).

In the above derivations, we have used extensive knowledge of binomial distributions to recognize iden-
tities, and to figure out how to factor terms so we can compute the sums. There is an alternative way of
deriving these formulas, as discussed below.

Note that we can write X = I; + I» + ... + I, where I} is the Bernoulli random variable indicating
success in the k-th attempt. Then, using the linearity property of expectations, we have

EX]|=EL+L+...+1,)=E[L]|+E[L]+...+E[l,]=np.

Note that we have avoided computing a difficult sum by using the fact that expectation is a linear operation,
and the fact that, for Bernoulli random variables, E[I;] = p. To compute the variance, we use a property
that we will derive in Chapter 5, that shows that the variance of a sum of independent random variables
is the sum of the variances:

Var[X] = Var[l; + Iy + ...+ I,] = Var[[1] + ... + Var[,,] = np(1 — p).

Binomial random variables are characterized by the two parameters n and p. Their statistics are sum-
marized below:

e X is a Binomial(n, p) random variable if it has PMF

x

n
1—p)" % x=0,1,...,n,
Py (a) = <)p( p)
0

otherwise.

Range: Rx = {0,1,...,n}.

Expected Value: £[X] = np.

e Variance: Var[X] = np(1 — p).

Interpretation: # of successes in n independent Bernoulli(p) trials.
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2.5.4 Geometric(p) Random Variables

The binomial random variable is obtained by fixing the number of Bernoulli trials and counting the number
of successes. A different random variable is obtained by counting the number of trials until the first success
occurs. Denote this random variable as X; this is a geometric random variable, and it takes values in the
discrete infinite set {1,2,...}.

Note that X = 1 if and only if the first Bernoulli trial is successful. Hence, Px (1) = p, where p is the
single trial probability of success For X = 2, the first Bernoulli trial must fail, but the second one must
succeed. Since the trials are independent, Px(2) = (1 — p)p. Reasoning along the same lines, X = k if and
only if the first £k — 1 Bernoulli trials failed, but the k-th Bernoulli trial succeeded. Using the independence
properties, we get

Px(k)=(1-p)*ipk=12...
The corresponding CDF is
Fx(z)=1-(1-p)l.

Geometric(p) random variables arise in applications where one is interested in the time between occurrence
of events in a sequence of independent experiments. Such random variables have broad applications in
different aspects of queuing theory. The important statistics of geometric random variables are summarized
below:

= kPx(k) =) kp(1—p)*—1
k=1 k=1

To sum the above expression, we use the following summation for geometric series for 0 < g < 1:

Zq

Differentiating both sides with respect to ¢ (whlch is justified by the summability of the series for p < 1)

yields:
k=1 (1-9)?

1fq

q)

Using this formula, we get:

> 1 1
:ka(l_p)k_lzpﬁ:*~
k=1

p

To compute the variance, we take another derivative of the summation equality, to get

L
k=1 k=1

= k(k—=1)¢" = k(k—1)¢*?
k=1 k=1
a1
dg(1—q)* (1-gq)?
Substituting 1 — p = ¢ yields Y ;= k(k — 1)(1 —p)*~2 = p%

Using these formulas allows us to compute E[X?] as

sz (1-p Zk ~1p p)k‘1+ikp(1—p)’“‘1
k=1

_2(1*) 1:(2*17)
T2 T p p?
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Hence,

Var[X] = E[X?] — (E[X])* = - ==

The geometric distribution is specified by a single parameter, p. Its properties are summarized below:

X is a Geometric(p) random variable if it has PMF

p(1—p)*~t 2=1,2,...,
Px(x) =
x(@) {O otherwise.

Range: Rx = {1,2,...}.

1
Expected Value: £[X] = »
—-p
2

Interpretation: # of independent Bernoulli(p) trials until first success.

Variance: Var[X] =

2.5.5 Poisson(\) Random Variables

In many applications, we are interested in counting the number of occurrences of an event in a certain time
period or in a certain region of space. The Poisson random variable arises in situations where the events
occur “completely at random” in time or space; that is, where the likelihood of an event occurring at a
particular time is equal to and independent of the event occurring at a different time. For example, Poisson
random variables arise in counts of emissions from radioactive substances, in the number of photons emitted
as a function of light intensity, in counts of demands for telephone connections, and in counts of defects in
a chip.

One of the applications of the Poisson random variable is as an approximation to the binomial probabilities
when the number of trials is large. If the number of trials n is large, and if p is small, then, letting A\ = np,
Simedn Poisson established this limit:

P
="M

ny—k
) R

: n| k
1 —p"(1 —
n—>o<1>1,2p=/\ k'(n — k)'p ( P

We briefly overview his proof below. Let K,, be the binomial random variable for n trials, each of which
has probability A\/n of succeeding. The probability mass function of K, is
Ak A —1)-(n—k+1) A\ A
Pk, (k) = nchoosek(ﬁ)k(l - nn=1)--n + >ﬂ(1 — Dyn-k

n nk

Note the following limits:
lim nn—1)--(n—k+1)

n—00 nk

= 1(same highest order power in numerator, denominator) .

lim (1 — é)" = ¢~ (Definition of exponential).
n—00 n
Ak
lim (1-=)F=1.

n—0o0 n
Thus,
k —_— . e —
lm Py (k) = 2 i M=)kt D)

n
n
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Poisson(\) random variables have an infinite, countable sample space Rx = {0, 1,2, ...} with the prob-
ability mass function

)\k
= —ei)\

k!
where )\ is the average number of event occurrences in the specified time interval or region of space. The
corresponding CDF of X is

Px (k)

=) i —x
Nee
Fx(x) =) 1
k=0 ’

To compute the mean and variance of a Poisson(\) random variable, we use a well-known summation

formula
> =
k=0
Then,
_ _ [N SR
E[X] = ZkPX(k‘) = Zkk! et=e Z =1
k=0 k=0 k=1
> )\k—l
=Xe A Z W =\ since the last sum is equal to e*.
k=1 ’

To compute the variance, we compute the second moment first:

EX?] =) K*Px(k)=> k2ﬁe”\
k=0 k=0 ’

In order to get an expression for this sum, we differentiate the exponential summation twice with respect
to A, to obtain

e =€ =

2 42 )k o0 k—2
e N d® A _Z(kQ_k)A

dx? T L dN2 kT k!
k=0 k=2
Therefore,
2 — e M e PR N L 2
IEX = —e = — e N =
(X2 ;k O ;(k k:)(k)!e +;k<k)!e A2+

We now compute the variance of X as

Var[X] = E[X?] — (E[X])2 = A2+ A= \2 =)\
Poisson(\) random variables are specified by a single parameter A. Its properties are summarized below:

e X is a Poisson(\) random variable if it has PMF

)\‘T —\
Py(x) = Ee z=0,1,...
0 otherwise.

e Range: Rx ={0,1,...}.
e Expected Value: £[X] = A
e Variance: Var[X] = A.



2.5. IMPORTANT FAMILIES OF DISCRETE RANDOM VARIABLES 63

e Interpretation: # of arrivals in a fixed time window.

Example 2.15

Suppose we are at a service facility, with a total number of five servers. Assume there are seven potential customers in the
facility, and the probability that any of them will require service is p, where each customer will require service independent
of any other customers’ requirements. Let X be the random variable denoting the number of service requests. What
type of random variable is X7 What is the expected number of requests? What is the probability that there will be more
requests than available servers?

First, we recognize that the random variable X is a binomial random variable, as the sum of independent Bernoulli
random variables (0-1 requests), with parameters n = 7 and p. The expected number of requests is thus 7p. The probability
that there will be more requests than available servers is

Px[{X > 5}] = Px(6) + Px(7) = <Z>p6(1 -p)+ (;)zf =m°1—-[p)+p .

Example 2.16

You are waiting for a taxi at the corner of St. Mary's street and Commonwealth Avenue. When a taxi goes by the corner,
there is a 0.9 probability that the taxi is occupied, and will not stop to pick you up. Assume that whether a taxi is occupied
or not is independent of whether other taxis are occupied. Let X denote the number of taxis that come by the corner until
one of them picks you up. What type of random variable is X7 What is the expected number of taxis that you will see
until you are picked up?

We recognize that whether each taxi is occupied or not is a Bernoulli trial, and the probability of success is p = 0.1.
The random variable X is thus a geometric random variable. The expected number of taxis that you should expect to see
until being picked up is thus E[X] = 10.

Example 2.17

Assume you have an X-ray source generating an X-ray beam with intensity equal to 10° photons/second towards a
detector. Let X denote the number of photons collected by the detector photons over a period of a millisecond. If X is a
Poisson random variable, what are its mean and standard deviation?

We compute the parameter A = 10°-107% = 100 for the Poisson distribution of X . In this case, E[X] = 100, Var[X] =
100. Thus, the standard deviation is ox = /Var[X] = 10.

Example 2.18

Suppose each episode of Game of Thrones includes a death of a major character with probability 3/4, independent of
whether deaths happen in any other episode. Assume there are an infinite number of episods to watch (it felt that way
sometimes...) Define X to be the number of episodes you watch until you see the death of a major character. What type
of random variable is X7?

X is a Geometric(%) random variable, where we explicitly provide the value for the parameter. Then, we know its
statistics:

1 4 1—p
E[X] === =:Var[X] = =
[ ] P 3’ ar[ ] p2

5\@‘»%‘
©

What is the probability that X > 3? Sometimes it is easier to compute the probability of the complement: the
probability that X < 2. We know

15

I
4 4 16"

> w

Px[{X <2}] = Px(1)+ Px(2) =p+p(1—p) =

Hence, Px[{X >3}] =1 - Px[{X <2}] = .

Let Y denote the number of episodes out of the first six you watch that contain a major character death. What type
of random variable is Y? Y is a Binomial(6, %) random variable. Hence, its key statistics are:

E[Y]:np:6~%:%; Var[Y] =np(l —p) =6-

=
=~ =
oo

171

What is E[Y?]? We know that E[Y?] = E[Y]? 4 Var[Y] = & + R

[e ] o]
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What is the probability that less than half of the six episodes include a death? This is Py [{Y < 3}], which we compute
as

PyI{Y <3} = Pr(0) + Pr(1) + Pr(2) = (3)° +6(;)° ) + (6) (D'CY

_1418+135 77
o 46 72048

Given that less than half the episodes contain a death, what is the probability that exactly two of the six episodes
contain a death? This is a conditional probability question: Let's define this in terms of events in the original probability
space. Define event A ={Y =2}, B ={Y < 2}. Then,

o
el

P[ANB] Py =2} ¥ 135
P[B] ~  PB] 1 154

P[A|B] =

-

We specialize the techniques of computing conditional probabilities to handle events defined in terms of
random variables in the next section.

2.6 Conditional Probability Models

In Chapter 1, given a probability space (2, &,P) and an event B € £, we defined the conditional probability
of any other event A € E, conditioned on observing B, as

P[AN B]

provided P[B] > 0. Otherwise, we left the conditional probability as undefined. A discrete random variable
X in (Q,&,P) with range in Rx = {x;,4 € 1,2,...,} defines events A; = {w € Q: X(w) = x;} € £. Those
events were used to define the probability mass function Px (z;) = P(4;).

Assume we observe an event B € E. We can define the conditional probability mass function of X given
B as

P{weQ:X (w)=2,}NB] .
Py p(z;) = P[A;|B] = PB] if P[B] > 0
undefined otherwise.

This conditional probability mass function will have all the properties of a probability mass function on
Ry, satisfying the basic properties of non-negativity, normalization and additivity:

Px|p(x) > Ofor all z € R,

Z Pyp(z) =1
Z Px|p(x) = mx|p[C] for all C C Rx
zeC

There is a special case of interest, where we observe the event that X takes it values in a set B C Ry,
and the conditioning event is By = {w € @ : X(w) € By1}. We are guaranteed that B; € £ is an event
because X is a random variable, and P[B;] = Px[B]. In this special case, the conditional probability mass
function simplifies: Specifically, note that

{we: X(w)=2} ifze B}

{weQ:X(w)Zm}ﬂBlz{q) ifr¢ B
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We write, with a small abuse of notation, the conditional PMF Px g(z) as

weN: X (w)=z z i
P[{ %X)fé]) 3o ﬂfi((B% if 2 € B and Px[B] >0

Px‘B(.’E): 0 1f$¢B&HdPX[B]>O
undefined if Px[B] = 0.

Thus, the conditional PMF P g(x) is proportional to the unconditional PMF Px (x), restricted to x = B,
and rescaled to satisfy the normalization property. It is zero for any values x ¢ B.

The conditional probability mass function has a range Rx|p C B, and satisfies all the properties of
probability mass functions.

¢ (Non-negativity) Px|g(z) > 0.

e (Normalization) ) 5 Px|p(z) = 1.

e (Additivity) For any set C' € Rx, the conditional probability that X € C given B is

Pl{w e Q: X(w) € CY{X(w) € B} =By 5[C] = 3 Px;p(a).
zeC

Note that Px[B] = >, <p Px(xx). Thus, we can write the conditional probability mass function of X
given B entirely in terms of the random variable X and its probability mass function, as

—Summfj;agx(xk) if x € B and sumg,cpPx(z) >0
Pxip(r) =140 if x ¢ B and sumy, cpPx(zr) >0
undefined if sumg, epPx(x) = 0.

Now that we have a conditional probability mass function, we can define conditional statistics for the
random variable X. For instance, the conditional expected value of X given an event B is given as

E[X|B] = ) xPx|p(x)
r€Rx

and the conditional variance as

Var[X|B] = E[(X — E[X|B1))*|B] = E[X?|B1] - (E[X|B])*

For any function g(X) that defines a derived random variable Y = g(X), we can define the conditional
expectation as

E[Q(X)\B] = Z g(x)PX\B(l‘) .

TERXx

Example 2.19

Assume X is a Binomial(5, 1) random variable. Define B = {X < 2}. Compute Px|z(z), E[X|B] and Var[X|B].

Px (x)

€B
Pyip(z) = 4 BxB] 7
x15(2) {O otherwise.

1

Px[B] = Px(0) + Px(1) + Px(2) = (%)5 + 5(2)4(%) + 10(§)B(§)2 - W _ %
Py|5(0) = gj[(g)] = %22 = %;me(l) = Pxp(2) = %02 - %
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Thus,
é z =0,
PX‘B(I): % 1’:1,2,
0  otherwise.
5 15 5
2 2 2 2 25
R 2z 225 _ 25
Var[X|B] = E[X°|B] — (E[X"|B])" = 2 16 - 13
Example 2.20

Consider a manufacturing station, where the random arrival time X of a part to be processed is uniformly distributed in
Rx ={1,2,3,...,20}. Thus, the probability mass function of X is Px(x) = %,m € Rx. Assume that you wait for
the first 6 slots and the part X has not arrived yet. Equivalently, you observe the event B = {X > 6}. Compute the
conditional probability mass function of X given B and its conditional expected value and variance.

Since B is defined in terms of Rx, we can use the simpler formula, restricting and rescaling the original Px(z). Note
that Px[B] =Y. .5 Px(x) = 35. Then,

0 z <6,
P frd 1 .
x15(2) ==L z>6

Note that this is now a uniform distribution from 7 to 20, so we can use formulas for uniform distribution to compute
mean and variance. The conditional expected value is

7420
E[X|B] =) xPx|p(z) = 5 =135

zEB

The conditional variance is
(20 —7)(20 — 7+ 2) (13)(15) 65

Var[X|B] = = =% 1695
ar[X| 5] 12 12 g~ 1625

Example 2.21

One of the interesting properties of a geometric random variable X is that it is “memoryless”. Let X be a geometric
random variable with parameter p. Assume we observe the event B = {X > k} for some value k. What is the conditional
mass distribution of X given B? Recall that Rx = {1,2,...,},and B={k+ 1,k+2,...,}.

We compute

Px[B]=> Px(k)=> pl-p*'=0-p°> pl-p)* " =1-p°

because we know, from normalization, that >.3°, p(1 — p)*~! = 1. Hence,
Px (z) z—7
r>7 1-— >7
Pyp(a)= 4 Bxtol 22T _qplmpmh w2 T
0 otherwise 0 otherwise

Define the additional wait time random variable 7' = X — 6. Then, note that

p(l—p)' t>1
P, t) =
r15(t) {0 otherwise

Thus, conditioned on B, T is a geometric random variable with the same parameter p as the original random variable X.

In words, the above expression states that, if a success has not occurred in the first j trials, the probability of having
to perform at least £ more trials until a success is the same as the probability of initially having to perform at least & trials.
Thus, the system “forgets” the past failures and begins anew as if it were performing the first trial.

Hence, if you are waiting for a bus that should arrive in 10 minutes, and you have already waited two hours, the
expected arrival time of the bus is still 10 minutes from now...as long as the arrival time was a geometric random variable.
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Note that conditional probability mass functions obey the usual laws that probability mass functions
obey. For instance, for a random variable X defined in the probability space (£2, &, P), we have:
e Multiplication Rule: For a random variable X and event B € &,
IP[{X =z}N B} = Px|p(z)P[B] .
If B C Rx, then

Px(z) z€B

IP’[{X =z}n{X € B}] = Px|p(2)Px[B] = {0 otherwise.

e Law of Total Probability: For a partition of Rx as By,...,B,, we can write the probability mass
function as a weighted sum of conditional probability mass functions, as:

Px(z) = ZPX‘BZ, (z)Px|Bi] .

e Bayes’ Rule: We can “flip” the conditioning, as in Bayes’ Rule, with some care. Let B C Rx. Then,

Py p(2)Px|[B] '

Px [B|{X =z}] = o)
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Chapter 3

Continuous Random Variables

3.1 Introduction

In the previous chapter, we described a random variable X as a measurable function from a probability
space (2, &, P) to the real line . We then focused on studying discrete random variables where the range of
X, denoted by Rx = X (), has a discrete, possibly countably infinite number of elements. However, what
about random variables where the range of X, denoted by Rx has an uncountable number of elements? This
is illustrated in Figure 3.1 where the range of X maps  into an interval [a,b]. Suppose we wanted to define
a uniform probability on that interval [a,b]. In this case, it is impossible to assign a probability mass to
any point € [a, b], other than 0, because we could not satisfy both the additivity property (the probability
of the union of disjoint sets is the sum of the probabilities of the individual sets) and the normalization
property (the probability of that X (w) € Rx equals 1).

In cases where the range Ry is uncountable, it is common that one cannot associate a nonzero probability
with any individual outcome. Since there are uncountably many values of the random variable X (w),w € S,
we focus on defining probabilities of events, and not individual outcomes. In terms of events, our focus will
be on events generated by the random variable X taking values in Borel sets: sets generated by countable
unions, complements and intersections of intervals. By restricting the random variable X to be measurable,
we guarantee that the inverse image of such a Borel set B, {w € © : X(w) € B} is an event in the event
space &£, and thus has a probability assigned to it by the measure P.

outcome

Continuous Random Variable X

Figure 3.1: A continuous random variable has an uncountable range.

3.2 Continuous Random Variables

In Chapter ??, section 7?7, we defined the cumulative distribution function of a random variable X as:
Fx(a)=Px({X € (—o0,a}]) =P{w € Q: X(w) < a}].

This definition is valid for all random variables, independent of whether the range Rx is discrete or not.
The function F'x(a) is defined for all a € .

This cumulative distribution function had the following properties:

1. (Non-negativity) Fx(x) > 0.
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2. (Normalization) Fx(o0) =1, Fx(—00) =0
(Monotonicity) a < b implies that Fx(a) < Fx(b)

3.
4. (Right-continuity) lim._,o+ Fx(a +¢€) = Fx(a) (continuity from the right)

3.2.1 Cumulative Distribution Function

We will use the cumulative distribution of X to define a continuous random variable, although we will wait
for a more precise definition later. Unlike discrete random variables, a continuous random variable must
have a continuous cumulative distribution function (CDF) Fx (z), as illustrated in Figure 3.2. Discontinuities
in CDFs occur at values x which occur with positive probability, so that P[{w € Q : X(w) = 2}] > 0. For
continuous random variables, we want the probability P[{w € 2 : X(w) = z}] = 0 for all z € R. Hence, the
CDF must be continuous.

R CDF (Discrete RV) CDF (continuous RV)
Plx]
X1 X R

Figure 3.2: CDFs of discrete and continuous random variables.

The CDF of continuous random variables has the following additional properties:

1. Continuity Fx(z) is a continuous function of z, i.e., Fx(z) = lim.,o Fx(z + €).
2. P{w € Q: X(w) =x}] =0 for all z € R. Every atom in Ry has zero probability.
Plwe Q: X(w) <z}] =P{s: X(w) < z}].

For a < b,P{w e N:a < X(w) <b}] = Fx(b) — Fx(a).

> w

5. If y is any number in the range 0 < y < 1, then there must be at least one number = such that
Fx(z) = y. This is a consequence of the intermediate value theorem for continuous functions. Note
that there could be multiple such numbers, as illustrated in Figure 3.3

Example 3.1

Suppose we want to choose a random number in the interval (0, 1), with every number equally likely to be chosen. That
is, Rx = (0,1). Intuitively, the meaning of random in this instance is that we do not favor any one number over others
in the interval (0,1). One way of expressing the innate randomness of the choice is as follows: Given any subinterval of
(0, 1), the probability that the chosen number lies in that subinterval is equal to the length of that interval. One way of
capturing this is with the following CDF Fx(z):

<0
Fx(z)=<=x .%6(0,1)
1 z>1

This cumulative distribution is illustrated in Figure 3.4. Note that the function is continuous; however, it is not differentiable
at either x = 0 or x = 1, as the slopes from the left and right at those two points do not match.
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Figure 3.3: CDF where only one x satisfies Fix(z) = y, and where an interval of x satisfies Fx(z) = y.

Figure 3.4: CDF and PDF for a continuous random variable.

For a random variable X to be continuous, it is not sufficient to have a continuous CDF. We want the
CDF to be differentiable almost everywhere.! Formally, we define a continuous random variable below:

Definition 3.1

A random variable X is a continuous random variable if its cumulative distribution function Fx(z) is continuous
and differentiable almost everywhere. That is, its CDF can be written as an integral Fx(z) = [*_ fx(z')d 2’ for some
non-negative function fx (z'). We refer to the function fx(z) as the probability density function (PDF).

For a function to be differentiable almost everywhere, it must be differentiable everywhere except for a
countable number of points x1, xs, ..., and there can only be a finite number of non-differentiable points in
any finite-length interval. This means the CDF will have a probability density function:

(o) = {d‘iFX(:c) if Fx(x) is differentiable at x,

any non-negative number otherwise.

Figure 3.4 illustrates a cumulative distribution function for a continuous random variable and its corre-
sponding probability density function (PDF). Note that this cumulative distribution function is differentiable
everywhere, so the PDF is uniquely defined everywhere.

3.2.2 Probability Density Function

The PDF of a continuous random variable is not a probability and may take values greater than one, but
it must be non-negative: It is a probability density. It is measured in units of probability per unit length.
However, the integral of a PDF over a region of x is a probability, and must be a number in [0,1]. At
this point, let’s compare the concept of a PDF to the concept of a mass density for physical objects. Table
3.1 shows this comparison.

The probability density function for continuous random variables plays a similar role to the probability
mass function for discrete random variables. The sum of the PMF of a discrete random variable over all the

LIf you are curious, there are random variables with continuous CDF that are not differentiable almost everywhere. Look
up references to Cantor distributions or the Devil’s staircase function.
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Physical mass in a system probability in an experiment
Is non-negative is non-negative
Density a function of space p(z) | probability density a function over the reals p(x)
Mass of region= Probability of events =
Integral of density over region Integral of density over outcomes in event

Table 3.1: Comparison of physical density and probability density

values in its domain Ry is equal to 1. Similarly, for a continuous random variable, the integral of its PDF
over the entire real line is equal to 1. Although it is not a probability, if fx(a) is finite, then, for small ¢,
the probability that a sample value occurs in the interval [a,a + €] is approximately px (a)e. Note that, as e
decreases, the probability that X = a becomes zero.

The PDF satisfies the following basic properties:

1. Non-negativity: fx(z) > 0.
This follows from the monotonicity property of the cumulative distribution function, which is non-
decreasing. Hence, its derivative, whenever it exists, is defined as

lim Fx(x+¢€) — Fx(x) .

e—0 €

fx(z) =

For € > 0, the numerator inside the limit is always non-negative, and hence the limit, if it exists, must
also be non-negative.

2. Normalization: / fx(x)de =1.

By definition, we know Fy (z) = [ fx(u)d u. We also know, by the normalization property of CDFs,
that limg_ o Fx(z) = 1. Thus,

Jim Fx(@) = Jim [ fxtdu- /m cofx(u)du=1.
b
3. Probability of an interval: Px[{a < X <b}] = / fx(z)dz.
Since Px[{X = z}] = 0 for any = € R, we have ’
Px[{a < X <b}] =Px[{a < X <b}] =Px[{a < X < b}]

From the CDF properties, we know
b a b
Py[{a < X < b}] = Fx(b) — Fx(a) = / Fx(@)d z —/ Fx(@)d z = / Fe(@)d 3.

4. limy oo fx(z) = 0;lim, o fx(z) =0.
As the magnitude of x gets large, the PDF curve must decay to zero. Otherwise, the integral of the
PDF would keep growing unbounded as |z| increased. Furthermore, the slope of the pdf must also
decay to zero as |z| grows unbounded.

5. PDF — CDF: /E fx(u)du = Fx(z).

This is the definition of the PDF.

Example 3.2
Consider a continuous random variable X, with PDF specified as

fx(o) = {333 z € [0,1],

0 elsewhere..
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We note this satisfies the properties that we want in a PDF: It is non-negative, and it integrates to 1:

[fo(m)dx:/013m2dx:1.

Note that fx (1) = 3 > 1 as it does not have to satisfy the bound for a probability. What this PDF indicates is that it is
four times denser around x = 1 than around x = 0.5. If you generated independent samples of this random variable, the
number of samples around 1 would be 4 times the number of samples around 0.5.

For discrete random variables X, the PMF provided the complete characterization of the probability
properties of X. A similar property exists for continuous random variables X: The PDF provides the
complete characterization its probability properties that we need for computing probabilities on the outcomes

in R.

Example 3.3
A continuous random variable X has PDF

0.75(1-2?) —-1<z<1,
fx(z) = (=) -
0 otherwise..

This density is illustrated in Figure 3.2.2. Compute Px[{0.25 < X < 1.25}]. -1 025 11.25
Using the basic properties of the PDF, we know Px[{0.25 < X < 1.25}] =

1.25
/ fx(z)dz. However, note that the region of integration involves two dif-
0.25
ferent pieces of the definition of fx. Hence,

1.25 1

1.25
Py [{0.25 < X < 1.25}] :/ Fx (2)da :/ 0.75(1—x2)d95+/ Odz = oL
0.25 0.25 1 256
Example 3.4 ’
A continuous random variable X has PDF r2
92X —1<z<0, 08
Ix(@) = {0 otherwise..
2
This density is illustrated in Figure 3.2.2. Compute Fx(—0.6) and Fx(—0.3).
~0.6 —0.6 o
Fx(—0.6) = / fx(x)d = / (—2z)d c=1-0.36 =0.64 . -03
—o0 —1
—0.3 —0.3 Figure 3.6: Figure for example
Fx(-0.3) = / fx(z)d x = / (—2z)d x=1-0.09=0.91 . 3.4.
—o0o —1

Example 3.5
Assume a continuous random variable has a PDF given by

0.75(1 —2?) —-1<z<1,
fx() = OO T) s es
0 otherwise..

This density is illustrated in Figure 3.7. Compute Fx(0) and Fx(0.5).

0 x
Fx(0) = / fx(z)d x = %by symmetry!
0 0.5
Fx(0.5) = / 0.75(1 — z°)d = = / 0.75(1 — 2°)d = Figure 3.7: Figure for example 3.5.
—o0 —1
_ _ o5 _ 9 1 1027
= 0.75(1.5) = 0.252° 2 = = — 2(1+ 2) = =

Figure 3.5: Figure for example 3.3.
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3.3 Statistics of Continuous Random Variables

3.3.1 Expected Value

We have left the PDF undefined at points « where the CDF is not differentiable. At such points, the
CDF has a different derivative when approached from the right as from the left. We are allowed to set the
value of fx(x) arbitrarily to any nonnegative number at those few isolated points where the CDF is not
differentiable. Note that this arbitrarily chosen value assigned to the pdf at these isolated points makes
no difference whatsoever in any probability calculations, because the probability that this number occurs is
zero. The probability that this number occurs is 0! In practice, we often choose either the derivative from
the right or the derivative from the left as the value of the PDF at non-differentiable points of the CDF.

Example 3.6
Assume a continuous random variable has a CDF given by
0 x < —3, Fx(x)
Fx(z) = t(x—3) —-3<x<3, 1
0 z>3. P
This density is illustrated in Figure 3.7. Compute fx(x), and define it for all 16 7T | / x
e R -3 3

Note that Fx () is differentiable everywhere except at x = +3. Then,

Figure 3.8: CDF and PDF for exam-

v <=3 ple 3.6.

-3 <<,
z>3.

Fx() = L () =

O ol O

This is also shown in Fig. 3.8. To complete the definition, we select fx(3) =
0 = fx(—3), which matches the slope of one of the two line segments that
meet at 3 and -3.

As was the case for discrete random variables, we define the expected value of a continuous random
variable X as
o0
E[X] = / z fx(x)de.

— 00

This is also known as the mean or average.. Similar to discrete random variables, this expected value
can be viewed as the center of probability mass. If we repeat an experiment N times, add up all observed
values of X, and divide by N to compute a sample average, the result should be pretty close to E[X]. We
sometimes use the notation px = E[X].

Note that, for the expectation to be defined, both of the integrals below must be finite.
00 0 00
E[X]:/ xfx(x)dx:/ xfx(x)dx+/ x fx(x)dx .
—o00 —o0 0

This is not always the case, as shown in the next example.

wren £20

0 otherwise.

Example 3.7
Let X be a continuous random variable with PDF given by: fx(z) = {

Note that this is a valid PDF, as it is nonnegative and properly normalized. It does decay to 0 slowly, in an inverse
square law. For this random variable, its expected value does not exist:

E[X] :/fo mfx(:r)dx:/ooo ﬁm:ln(wﬁ)\%’ =00 .

This illustrates that some statistics of RVs may not be defined because the required expected values may not exist.



3.3. STATISTICS OF CONTINUOUS RANDOM VARIABLES 75

3.3.2 Variance

The variance measures how spread out a random variable is around its mean. For a continuous random
variable X, it is defined using expectations in the same way as it was for discrete random variables:

Var[X] = E[ (X - E[X])’] = E[X?] - (E[X])’

N /°° (z — px)? fx (z) dz.

—00

We often refer to the variance of X as 0% = Var[X], where ox > 0 is the standard deviation.

3.3.3 Expected Value of a Function of a Random Variable

Let g(-) be a function mapping the range of a random variable X, Rx, into the real numbers . Then,
the variable Y = ¢g(X) is a random variable. We can compute the expected value of Y = ¢g(X) using the
definition of the function and the PDF of X, as

o0

BY] =Ely(0)) = [ g@)fx(o)ds
Note that this expression is valid no matter whether the random variable Y is discrete, continuous or of
other types. It avoids the need for computing the detailed PDF or PMF of Y, by performing the averaging
in terms of the PDF of the random variable X.

05 —1<z<1

0 otherwise

Example 3.8
Let X be a continuous random variable with PDF fx(x) = {

We compute px as
1

0.5zd =0 .
1

ux =E[X] = /j:mfx(x)d:c :/

The variance 0% is given by:

Var[X] = E[X?] - (E[X])? = /11 0.52%d @ = % .

Let g(x) = |z|, the absolute value function, and let Y = ¢g(X). Then,

1

ElY] =E[g(X)] = /1 0.5|z|d z = /: 0.5(—z)d = + /01 0.5(z)d z =0.5 .

An important class of functions are the affine functions g(z) = ax + b. For these classes of functions, we
establish the same relations that were established in 2.4. Let Y = g(X) = aX +b. Then, E[Y] = E[aX +b] =
aE[X] 4 b. In addition, we can compute the variance as:

Var[Y] = E[(aX + b — aE[z] — b)?] = E[(a(X — E[X]))?] = a*Var[X] .

Thus, the variance of Y does not depend on the constant b, and is related to the variance of X as Var[Y] =
a®Var[X], as variance is a square statistic. Note that, in terms of standard deviation, oy = y/Var[Y] = |a|ox,
so that the standard deviation scales linearly with a.

Let g(z) = agi(x) + bg2(x), and let Y = g(X). Then,

o0 o0

E[Y] = Elag:(X)] + E[bg2(X)] = a/ g1(z)d x + b/ g2(x)d x = aE[X] + bE[Y]

— 00 — 00

emphasizing the fact that E[-] is a linear operator.
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3.3.4 Moments

Using the expectation operator, we define the following moments for continuous random variables, in exactly
the same way they were defined for discrete random variables:

Definitions (same as for discrete random variables):

Mean of X

Variance of X

h

n*™ moment of X

n'® central moment of X

Example 3.9
Assume a continuous random variable X which has a PDF given by

3

(s

0

2

2?2 —1<z<l,

elsewhere.

Ix(z)

This density is illustrated in Figure 3.9. Compute the mean, second mo-
ment, third moment and fourth central moment.

First, note the symmetry of fx(x) about zero. This means that, for any
odd function where f(z) = —f(—=x), we have E[f(X)] = 0. In particular,
the first and third moments are expectations of odd functions f(z) = z
and f(z) = 23, so we have E[X] = 0,E[X?] = 0.

The second moment is

/OO
— o0
Since the mean is zero, the fourth central moment is equal to the fourth
moment:

E[X*] = /_Z a2t fx(x)d = /_11

E[X?] 2 fx(z)d x = /1

-1

3
—zx

14

7)1 3

,177.

z4§:c2d T =

2

-1.0 00 05

Figure 3.9: Figure for example 3.9.

3.4 Important Families of Continuous Random Variables

Although most experimental measurements are of limited precision, it is often easier to model their outcomes
in terms of continuous-valued random variables because it facilitates the resulting analysis. Furthermore,
the limiting form of many discrete-valued random variables result in continuous-valued random variables.
Below, we describe some of the most useful continuous-valued random variables. Specifically, we overview
the properties of the following families of continuous random variables:

e Uniform
e Exponential

e Gaussian (Normal)

These families of continuous RVs are used to model the outcomes of common experiments. Members
of a given family differ only by the values of the few parameters of the family, which are easy to estimate
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from sample data. We also discuss a few other families of continuous random variables that are used less
frequently in engineering applications.

3.4.1 Uniform(a,b) Random Variables

The simplest continuous random variable is the Uniform(a, b) ran-

dom variable X, where X is equally likely to achieve any value in Fidx) Leb-a
an interval of the real line, [a, b]. The probability density function Ll ==
of X is given by: [ | x
a b
—if x € [a,b] F
_ b—a 1 ’ X(x)
T) =
fx(@) {0 otherwise 14
The corresponding cumulative distribution function is given by
X
0 T < a, -
a b
Fx(z) =450 a<z<b
1 z>b. Figure 3.10: CDF and PDF for uniform

The PDF and CDF of uniform random variables are shown in RVs.

Figure 3.10.

We use the notation X ~ Uniform([a,b]) to denote a random variable with continuous uniform distribu-
tion on the interval a,b. Using the PDF, we compute the statistics of X ~ Uniform([a, b]) as:

o b 2 2
T b* —a a+b
E[X]:/ :I:fx(ac)d:v:/ HMZQ(%@) = Mean
a

— 00
/b x? ¥ —a®  a?+ab+ b2
5 dx =

E[X?) = / T Py =

s —a © 30b-a) 3
2 b+ b2 24 92ab+ b2 b—a)?
VarlX] = E[x?] - (g[x])? = “ T OHECH2OEE OO e

Example 3.10
Consider a random wave of known amplitude A is oscillating at frequency wg radians per second, but with unknown phase.
We model the unknown phase as a random variable ©, uniformly distributed on the interval [—m, 7], so that the time
history of the wave is represented as

z(t) = Acos(wot + O).

From the properties of uniform random variables, we know the average phase E[©] = 0, and the variance of the phase
2

is Var[®] = 7(777(17;))2 =

The important statistics of uniform random variables are summarized below:

1

_ lex <b
o PDF: fy(z)=4b—a " =7
0 otherwise.
0 r<a
r—a
e CDF: Fx(z) = — a<z<b
1 b<zx.
a+b

e Expected Value: E[X] = 5
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(b—a?

e Variance: Var[X] = 15

e Interpretation: Equally likely to take any value between a and b.

3.4.2 Exponential(\) Random Variables
Mx)
l ............

Exponential(\) random variables arise in the modeling of the time 1/

between occurrence of events, such as the time between customer X
requests in service systems, the durations for call connections Fi(X)
. . e . X
in phone systems, and the modeling of lifetimes of devices and
systems. The exponential random variable X with parameter A
has a probability density function

v

fx(z) =

Ae ™ if x>0
0 elsewhere.

Figure 3.11: CDF and PDF for exponen-
tial RVs.

The parameter A is denoted as the rate of the exponential random variable, and it is typically measured
as units per time. An exponential random variable only takes values in the non-negative real line. The
corresponding CDF is

1—e X ifz>0
Fy(z) = =9,
x(@) {0 if 2 < 0.

The PDF and CDF of exponential random variables are shown in Figure 3.11.

The exponential random variable is similar to the discrete geometric random variable, in that it is the
limit of the geometric random variable, as the difference between values of a geometric random variable gets
small. For example, assume that an interval of length T seconds was subdivided into subintervals of length
T/n, and assume that, for each subinterval, there is a Bernoulli trial with probability of success p = ¥7
where A is the average number of events per second, so AT is the average number of events per T seconds.
Then, the number of subintervals until the occurrence of the next event is a geometric random variable M.

Let X denote the time until the next successful event. Then, for any ¢ which is a multiple of T'/n,

n t/T
PI{X > )] = B[{M > 7} = (1 - p)"/T = (( B AnT)n>
In the limit, we get

: _ At
nILH;O P{X >t} =e

which is 1 — F'x(t) for an exponential random variable X with rate A.

We use the notation X ~ exponential(A) to denote a random variable X with exponential distribution,
parameter A\. The important expectations of an exponential random variable X ~ exponential(\) are
computed as:
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E[X] = / zfx(z)d x = /0 xAe *d z (integrate by parts)

—0o0

oo
= —ze M| —|—/ e d z
0

1 e 1
= 0 — Xe A |0 = X
E[X?] = / zfx(x)d x = / 2 e Md x = —/ z%d e (integrate by parts twice)
—0o0 0 0

oo 2 oo
S i he 2/ re Md x = f/ xd e
0 A Jo

2 2 [ 2
= Zze M| — 7/ e Ml = —
0

A A 22
Var[X] = B[X?) — (ELX)? = 2 - 5 = 15

Example 3.11

The duration of a service repair request for a broken appliance is modeled as an exponential random variable X with
parameter A = 0.1 repairs/minute. The repair person charges a fixed rate of $5.00 for the first five minutes, then $0.50
for each additional minute. Compute the expected time to repair the appliance, the variance of the repair time, and the
expected cost of the repair.

Since X is an exponential random variable, the expected repair time and variance are computed as:

1 1

E[X] = — = 10minutes. Var[X] = — = 100minutes” .

A A2
The cost can be viewed as a function g(X) defined by
0 z <0,
g(x) =45 0<z<5,

54+0.5(x—5) x>5.

Then,

¢S]

Bo(0) = [ a@ix@dn = [ six@ie+ [T 0565 x@ia
=5+ /°° 0.5(z — 5)0.1e **d z = 5/00 0.5()0.1¢" %145 g y substitute y — = — 5
5 0

=5+0.5¢ " / 0.1ye %"d y =54 0.5e "PE[X] = 5 + 5~ *° ~ $8.03 .
0

Note that the expected cost E[g(X)] is not equal to g(E[X]) = $7.50. This is because g(-) is not an affine function.

The properties of exponential(\) random variables are summarized below:

Ae ™ x>0
e PDF: ) = -
fx(@) {0 z < 0.
l—e ™ 2>0
e CDF: Fx(x) = -
x () {o z<0.
1
e Expected Value: E[X] = 3

1
Variance: Var[X] = 2
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e Interpretation: Continuous waiting time. “Continuous version” of geometric random variables.

e Applications: Packet interarrival times, call durations, hard drive lifetimes.

3.4.3 Gaussian(y,0?) Random Variables

o)
0.4

Gaussian(u, 0?) random variables model many situations where 227 PDF /_\\
the random event consists of the sum of a large number of small ol |
random variables. They are named after Karl Friedrich Gauss, 0 L —£/2 e — 2\3— o
who used this class of random variables to model errors in mea-
surements for the least squares estimation of orbital parameters <I>(x)| ‘ ’ T
from telescope observations. Gaussian random variables are de- R /
termined by two parameters: their mean p and their variance 05— CDF
o2, ol || /
The probability density function of a Gaussian random variable " //
is given by , B

1 7(w—;;)2 4 3 2 1 0 1 2 3 4 x
20

T) = ——e
0=
. Its corresponding CDF is given by

.y Figure 3.12: PDF and CDF for Gaussian
¥ 1 _w=p)? A | y? RVs.
Fx(x) = e 202 du:/ e 2dy .
x(®) [oo V2mo? oo V2m Y

where the last equality follows by substituting y = “>#. Note that the last integral corresponds to a Gaussian
CDF win mean zero and variance 1. The PDF and CDF of Gaussian random variables are shown in Figure
3.12.

We refer to a Gaussian(0,1) random variable as a standard Gaussian random variable. Note that the
CDF of any Gaussian(u, 0?) random variable can be computed in terms of the CDF of a standard Gaussian
random variable. We formally define the CDF of a standard Gaussian as the function

* 1 T
D(x) = / me_Td yn ,

and the standard normal complementary CDF as Q(z) = 1 —®(x). Unfortunately, ®(z) cannot be computed
in closed form, but its values are tabulated in Appendix C.

Gaussian random variables are also known as Normal random variables because many sets of data gath-
ered from a variety of physical phenomena seem to fit the Gaussian (or normal) distribution. In these sets
of data, errors arise as the combination of many small effects; to develop the exact distribution of the sum
of many random variables is unwieldy. Fortunately, the central limit theorem, which we study in Chapter
8, asserts that if many “small” random causes produce a net effect, then that effect can be approximately
modeled as a normal or Gaussian random variable.

We often write X ~ A(u,?), or use the phrase “X is N'(i,02)”, to denote that X is a Gaussian(p, o?)
random variable with mean u and variance o2. The statistics of a Gaussian random variable X are specified
in its parameters:

E[X]=px  Var[X]=0%.

We note that this notation varies across texts. Some texts will refer to a Gassian random variable as
N (1, 0), using the standard deviation instead of the variance. We chose our notation because it generalizes
to vectors in a natural way.

Normal distributions are used in many situations. In many classes, professors believe that the distribution
of grades must be normally distributed with a given mean and variance. Thus, you see the phenomena that



3.4. IMPORTANT FAMILIES OF CONTINUOUS RANDOM VARIABLES 81

exams are graded “on the curve,” where the actual grades are mapped nonlinearly into the Normal bell-
shaped PDF, and letter grades are assigned based on the percentile of the grade using the standard Normal
CDF ®(z). Similarly, SAT and GRE actual scores are nonlinearly mapped so that the final scores correspond
to a N(500,10000) distribution.

Gaussian random variables have an interesting property: an affine transformation of a Gaussian random
variable is also a Gaussian random variable. That is, if X N(u,0?) is Gaussian, then Y = aX + b is
also Gaussian for any real scalars a,b. We will show this later in this chapter. Furthermore, we know
E[Y] = aE[X] + b, Var[Y] = a*Var[X], so

X N(p,0%) =Y =aX +bN(ap+b,a?0?)
This important property is another reason why Gaussian variables are often used in engineering models.

The Gaussian PDF is symmetric about its mean. This implies that all odd central moments are zero.

Using integration by parts, we can compute all even central moments as a multiple of the variance o2, as

E[(X —E[X])*"] = (2n—1)(2n - 3) -~ (1)o
. Thus, E[(X — E[X])4] = 302, E[(X — E[X])®] = 1502.

To perform computations about probabilities of Gaussians, we use the standard normal CDF function
®(-). Appendix C includes the detailed tabulated standard normal CDF. We note the following properties
which are useful for computation:

O(—z)=1—- () D(z) — O(—z) =20(z) — 1

Qr) = (—z) =1 &(x)

The way we use the standard tables for computation is for computing probabilities for a Gaussian random
variable X ~ N (p,0?). Recall that

Fy(z) = @(z;“) .

Note that the argument of the standard Gaussian function ®(-) is expressed as the difference between the
value x and the mean of the random variable, expressed in units of standard deviations. That is, the statistic
2z = Z=£ used as the argument for ® is the number of standard deviations away from the average. We
illustrate this with the following example:

Example 3.12
Consider a Gaussian random variable X ~ N(1,4). Determine the probability that X lies between -1 and 3.

From its definition, P[{—1 < X < 3}] = Fx(3) — Fx(1). The standard deviation of X is ox = /4 = 2. Then,

P{—1 < X < 3}] = Fx(3) — Fx(—1)

:3;1:1; I et Y

P[{~1 < X < 38}] = Fx(3) ~ Fx(~1) = ®(zs) — (2_1) = ®(1) - &(~1)
=®(1) — (1 — ®(1)) = 20(1) — 1 = 2(0.8413)-1 = 0.6826

Z3

where the number for ®(1) was obtained from the table in Appendix C.

Example 3.13

An underwater microphone is measuring the average acoustic pressure X to detect whether there is a submarine generating
sounds in its neighborhood. If no submarine is present, the background acoustic pressure is modeled as a Gaussian, with
X ~ N (2,4). If the submarine is present, the measured acoustic pressure is modeled as X ~ N(3,4).

The microphone uses a simple threshold T' € (2, 3), and if the measured X > T, it declares that a submarine is present.
A false alarm happens when there is no submarine present (so X ~ A(2,4)), yet X > T. What is the probability of a
false alarm? Express the answer in terms of T" and the standard complementary CDF Q(-).



82 CHAPTER 3. CONTINUOUS RANDOM VARIABLES

When no submarine is present, X ~ N(2,4), so p =0 = 2. Pr = P[{X > T}] = 1 — Fx(T). Computing the
z-statistic, zr = T52. Thus,
T-2
Pp=1-2(er) = Q(2r) = Q(=5—)-

If the submarine is present, but X < T, the microphone will not declare a detection, and thus the detection will be
missed. Express the probability of missed detection in terms of T using the complementary CDF Q(-).

When the submarine is present, X ~ N(3,4), so u = 3,0 = 2. Then, Pyp = P{X < T} = Fx(T). The z-statistic

is zT:%,so

P]\4D = Fx(T) = cI>(ZT) = (I)(

A summary of the properties of a Gaussian random variable X ~ N (u, 0?) is:

1 _(z=w)?

e 202
V2mro?

PDF: fx(z) =

T —p 1l w2
DF: F =0 here ®(z) = 2 dw.
C x (z) < . ) where ®(z) [m \/%e w

e &(z) is the standard normal CDF. Q(z) =1 — ®(z) is the standard normal complementary CDF.

Expected Value: E[X] = u.

Variance: Var[X] = o2

Interpretation: Sum (or average) of many small random effects.

Applications: Noise modeling, linear systems, high-dimensional data.

3.4.4 Other families of continuous random variables

Below we quickly overview other classes of continuous random variables that are used less frequently in
engineering. This section is primarily for reference, and won’t be used much in the rest of this course.

Gamma and Erlang random variables Gamma random variable appear in may applications. For
example, it is often used to model the time to service customers in queuing systems, the lifetime of devices
in reliability studies, and the defect clustering behavior in VLSI chips. The probability density function of
a gamma random variable X has two parameters p > 0, A > 0, and is given by

a(az)P~le

I=""10)

where I'(z) = / 27" 1e™®d . Note that, for z a positive integer, T'(z) = (z — 1)!. Other notable values are

0(0.5) = /7.

The versatility of the gamma distribution is that, by properly choosing the two parameters, it can take
a variety of shapes, which can be used to fit specific distributions. For instance, when p = 1, we obtain
the exponential random variable. By letting p = m, where m is a positive integer, we obtain the m-stage
Erlang distribution, which is the distribution of the sum of m independent and identical exponential random
variables, each with rate .
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The CDF of general Gamma distributions can only be expressed in terms of special functions and is
seldom used for computations. The important expectations of a gamma random variable X with parameters
p, A are given by:

Rayleigh random variables Rayleigh random variables are often used to model the random magnitude
of a vector. As such the variables must be positive. The PDF of a Rayleigh random variable X with

x
parameter « is given by: fx(z) = 726—952/2“2.
a

22
The CDF of a Rayleigh random variable X with parameter « is Fix () = 1—e™ 222. Some of its important

statistics are

E[X] = a g
Var| ]:4_7T 2

Laplacian random variable: The Laplacian random variable models a two-sided exponential distribution
with parameter A. The probability density function of a Laplacian random variable X is given by

A
fx(z) = Se el
2
Its CDF is given by
LAz r <0
F =<2 ’
x(@) {1—16 AT >0,
with expectations:
E[X]=0
2
Var[X] = 2

Cauchy random variable: The Cauchy random variable is often used as an example to illustrate distri-
butions which do not decay fast enough as © — oo, so that no moments exist. We call those heavy-tailed
distributions. The probability density function of a Cauchy random variable with parameter 5 is given by
fx =

X = B2+ a2

1 1 x
The CDF of a Cauchy random variable X with parameter 8 is Fx(z) = 5 + ftanfl(B).
0
Due to its symmetry, the mean is often taken to be zero, though the formal expected value of the density
does not have a unique value. It is easy to verify that the variance of this distribution does not exist either.

In Table 3.2 we summarize the characteristics of important random variables, where the more general
(shifted) forms of the Laplacian and Cauchy distributions are given.

Example 3.14
Consider the following quick questions regarding continuous random variables:



n
<3
=
o)
<
-
~
S
Discrete-Valued X
W Name Range Ry Parameters PMF Px (z) CDF Fx(x) Mean Variance z)
A . 0 0 z <0,
—p =
ANn Bernoulli {0,1} 0<p<l1 P(z) P g (1-p) x€]0,1) D p(1—p)
~ b= 1 z>1.
n
) Uniform {k,k+1,...,k+n} n >0,k integer :F.I Em‘.ﬂ.t k+ 5 ?JML
"w Binomial {0,...,n} 0<p<1 @v@aﬁ —p)n—2) \Wau_o Amvﬁwﬁ —p)(n=Fk) np np(l —p)
Z Geometric {1,...} 0<p<l1 (1—p)*~1p (1—(1—p)l=ly w H@\%
M Poisson {0,1,...} 0<A \/HM_\» w@o \/xm_\y A A
)
@)
o Continuous-Valued X
m Name Range Parameters PDF fx(z) CMF Fx(x) Mean  Variance
= Uniform la, ] a<b . 2o ath (b—a)”
M Gaussian [—00, 00] w, o2 /\M\aq e~ (@=n)* /207 1-Q((x—p)/o) 1 o2
nHw Exponential [0, 0] A>0 e~ A2 1—e @ 1 =
n n—1_—Az - k
Erlang [0, 00] A>0,n>0 i 1—eMeyyo) C,M_v 3 Sx
z) (P2 0
Gamma [0, o0] Ap>0 \/C;ﬂ% Z\W ] £ &
Rayleigh [0, 0] o? He? /20 1—e % /2 ay/s oo (2- WVQM
: A= Az—pl me@qltv T < p 2
Laplacian [—00, 0] A>0,pu se 1= leMen) 3> g t 5%
Cauchy [—00, 0] 8>0,«a %ﬁ@% w + wﬁmbl AeMQv Undef Undef
Table 3.2: Important random variables. (N/A under the PDF column indicates that there is no simplified form.)

<
©
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1. if X ~ Uniform([0,1]), and Y = —2X + 1, compute E[Y] and Var[Y].
Answer: E[X] = % = 0.5; E[Y] = —2E[X] + 1 = 0; Var[X] = &; Var[Y] = (—2)*Var[X] = 1.
2. If X ~ Uniform([a,b]), and E[X] = 2, Var[X] = 4, what are a,b?
Answer: E[X] =2 = 2fb; Var[X] =4 = % sob—a=4v3. Thus, b=2+2V3,a =2 —2V/3.
3. If X ~N(0,0.5) and Y = —2X + 1, what is the probability that Y > 5, in terms of the standard Gaussian CDF
D(x)?
Ar(153ver: E[Y] = 1,Var[Y] = (=2)?(0.5) = 2. Thus, P[{Y > 5}] = 1 — Fy(5). Since Y has mean 1, standard

deviation v/2, the z statistic z5 = \;51 = 2v/2. Hence, P[{Y > 5}] = 1 — ®(2v2) = Q(2V2).

4. If X is Gaussian with E[X] = 1,E[X?]
Answer: Var[X] = E[X?] — (E[X])? =

= 5, what is the variance of X7?
4.

3.5 Conditional Probability for Continuous Random Variables

Consider a probability space (2, £, P). For any events A, B € £ such that P[B] > 0, we define the conditional
probability of A given B as:
P[AN B P[AN B

PAIB = =55 ~mB—AcPBNA-

Let X be a random variable defined on (2, &, P). Then, {w € Q: X(w) < a} = {X < a} defines an event
in £. Using this event, we can define the conditional cumulative distribution function Fx|p(a) as follows:
{weN: X(w)<a}nB] PH{X <a}nB|

Pl

Note that this definition is valid for all random variables, not just discrete or continuous ones. For discrete
random variables, we defined the conditional probability mass function in 7?7, as Px|g(a) by exploiting the

fact that Rx was discrete:
P{X =a} N B
Px|p(a) = EE

For the special case that B C X, so that the event is {w € Q : X (w) € B}, this simplified to

P(a)
a € By,
Px|p(a) = {PX[B]

0 otherwise.

We referred to this operation as restrict/rescale: restrict the probability mass functions to a € B, and rescale
so that 5 Px|p(z) = 1.

Suppose X is a continuous random variable, so it has a probability density function fx(x) defined
almost everywhere. We can compute the conditional CDF Fx g (a) as indicated above. Then, we define the
conditional probability density function fx|g(a) as the derivative of the conditional CDF":

d QP[{X g CL} N B] limeﬁo P[{XSQ-‘,—E}HBE—]P’[{XSG}QB]

fxB(A) = %FXIB(‘Z) = o P[B] - P[B]

It should be clear that, if X has a CDF that is differentiable almost everywhere, the conditional CDF will
also be differentiable almost everywhere, so the conditional PDF will exist as defined above.

We can simplify this when the conditioning event is {X € B C R}. In this case, Px[B] = [, fx(z)dz =
P[{X € B}]. For this case, we have the following:

P[{X§a+e}ﬁ{X6B}]—P[{Xga}ﬁ{XeB}]:/

z€(—o00,a+€e]NB

fX(x)dx—/ fx(z)d z .

z€(—o00,a]NB
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Thus, taking limits and using the fundamental theorem of calculus,

. PH{X <a+e}N{X € B} -P{X <a}n{X eB}] |0 ifa¢ B,
By € ) limeso P[{X§a+€}l_P[{X§a}] if a € B.
Ix@) o p
Thus, when the conditioning event is {X € B} , we have fx g(z) = ¢ Px[B]
0 otherwise.
Example 3.15

Let X ~ Exponential(2) be an exponential random variable with rate 2. Consider the event B generated by {X > 1}.
Then, Px[B]=1—- Fx(1) = e~2, and the conditional PDF of X given B is

2e2%% —2(z—1)
—— = 2e z>1,
fX\B(x) = { e—2 -

0 r<l1.

Note that the conditional fx|g(x) is just the original fx (z) shifted to start at = 1! This is the memoryless property
for exponential random variables that we showed earlier for geometric random variables. If we define the time to go as
Y = X — 1, then fy|g(a) = fx(a). Thus, if you have waited for one hour for an arrival, the time you have left to wait
has the same distribution as the original arrival time.

With the conditional PDF, we can define conditional statistics: The conditional expected value of X is

axi5) = [ efap(ads.

— 00

The conditional expected value of a function g(X) is

oo

M%mwz/’ﬂmh@mw

— 00

With these equations, we can now compute the conditional variance of X given observation of event B as
Var[X|B] = E[X?|B] — (E[X|B])%.

3.6 Functions of a Continuous Random Variable

Assume we have a random variable X defined on a probability space (2,£,P). Any measurable function
g : | = R can be used to define a derived random variable Y = ¢g(X) on the same probability space. However,
even if X is a continuous random variable, it is unclear as to whether the resulting random variable Y will
be continuous, or discrete, or perhaps a mixed random variable, a type that we have not discussed yet. Even
if X is a continuous random variable and ¢(-) is a continuous function, the resulting random variable Y is
not guaranteed to be continuous.

We have described previously how to compute statistics of Y, such as E[Y] or E[Y?], without having to
compute the resulting PMF or PDF of Y; e.g. E[Y] = / g(x) fx(x)d . What we are after in this section

— 00

is computing the full PMF or PDF of Y, whenever it is appropriate to do so.

Example 3.16

Let X ~ Unlform([—LlD Define g(l’) _ 0 z< 07

x x>0.
variable, but Y = ¢g(X) has the property that P[{Y = 0}] = 0.5, so that there is mass at the point Y = 0. Thus, Y is not
a continuous random variable, because the CDF of Y is not continuous.

. Note that g(z) is continuous, and X is a continuous random
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3.6.1 Transforming Continuous to Discrete

One case in which we can handle the transformation ¥ = ¢g(X) is whenever the function g(-) is piecewise
constant. In this case, Y = g(X) will be a discrete random variable, with range Ry written as the list of
discrete values that g(x) can take. In this case, we can determine the PMF of Y as follows:

For each value y € Ry, determine the set of values of = such that g(z) = y. Formally, find A, = {z :
g(x) = y} for each y € Ry. Then, compute Py (y) = / fx(z)d = . The resulting random variable is
TEA

Y
discrete, and its statistics can be obtained for the PMF function computed above.

3.6.2 Transforming Continuous to Continuous

If X is a continuous random variable, the function g(x) is continuous, differentiable almost everywhere, and

d
its derivative ¢'(z) = d—g(x) is not zero on any interval (but can be zero at specific values), then ¥ = g(X)
x

is a continuous random variable. Under these conditions, the set of values = such that g(x) = y is discrete,
and has probability zero. Thus, probability mass does not accumulate at any value of y.

For these cases, the PDF of Y can be determined from the PDF of X and knowledge of the function g(-)
and its derivative. Given the range Ry, compute the range Ry = g(Rx). For each y € Ry, determine the
set of all values of z € Rx such that g(z) < y. Formally, find By = {z € Rx : g(z) < y} for each y € Ry.
Then, the CDF of Y is determined as

Fy(y) = P{Y <y} = /B fx(@)d x

d

Once the CDF of Y is found, the PDF is obtained as the derivative fy (y) = a

—Fy (y).

There is a special case of functions ¢(-) for which the computation of the PDF of Y is simpler, and can be
done avoiding the need to compute the CDF of Y first. That is the case where g(+) is strictly monotonic:
either strictly increasing (g(z) > g(y) if © > y) or strictly decreasing (g(z) < g(y) if # > y). In this case, the

function g(z) has an inverse function h(y) = g~'(y), and the PDF of Y = g(X) is fy (y) = fx (h ‘h

A special case of monotone functions g(-) are affine functions g(x) = ax 4 b where the slope a is non-zero.
In this case, h(y) = (y —b), dyh( )= and

a

fr(y) = fX(y b)-

la]

We illustrate this with several important examples:

Example 3.17
Let X be a Gaussian random variable such that X ~ N (i, 0?). Let g(z) = ax + b, with a # 0. Then, Y = g(X) is an

affine transformation of a Gaussian random variable. By the above formula,
1 1 _ a2 -w? 1 _ (y=b—pa)? 9 o
frly) = ——=e 207 = ——e 222 ~N(ap+bao").
la] v2ra2 V2ma2o?

This proves the important property that affine transformations of Gaussian random variables are Gaussian random variables.

Example 3.18
Let X be a uniform random variable, with X ~ Uniform((0,1]). Let g(z —+ In(z) which is a monotone, strictly

) =
decreasing function with inverse h(y) = e=*Y. Let Y = g(X); then, Ry = (0, o0); then,

d

Fr) = Fx (b)) @hw)\ = bl = 2e My > 0.
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This shows Y ~ Exponential()), an exponential random variable.

Example 3.19

Consider a function ¢(y) that is continuous, monotone non-decreasing, differentiable almost everywhere with values in
[0,1] such that limy o g(y) = 0,limy 0 g(y) = 1. Assume that ¢(y) is strictly monotone increasing over its range
Ry ={y e R:0 < ¢g(y) < 1}. Let X be a uniform random variable on [0, 1]. We want to find a transformation ¥ = g(X)
such that the derived random variable Y has CDF Fy (y) = ¢(y).

Let 7(y) = ¢~ *(y) be the inverse of g, so that r : (0,1) — Ry, and define Y = »(X). Then,
Fy(y) =PHY <y}l =P{X < q)}] = Fx(q(y)) = a(y)

Hence, we can transform uniform random variables on [0,1] to random variables Y with CDF ¢(Y") as long as ¢(Y) is
strictly increasing over its effective range.

Example 3.20
Let X ~ N(0,1), and let Y = X?. Note that g(-) is continuously differentiable, but not monotone. For any value
y€[0,00), let By={zeR:2> <y} =.{zeR: —/yz < /y}. Then,

Fy (y) = Px[By] = ®(VVy) — ®(—=) -

Hence, its PDF for y > 0 is

d 1 1 _u 1 1 1
M=y S D = 5 v T

3.7 Mixed Random Variables

There are many random variables that are neither continuous nor discrete. For instance, consider the random
variable X with CDF given by

0 z <0
Fx(z)=4¢05+05z 0<z<1
1 r>1.
This CDF is not continuous, as it has a jump at © = 0. However, the range of X is Rx = [0,1], an

uncountable space. Random variables with a CDF that has a discrete set of discontinuities, but is almost
surely differentiable elsewhere are mixtures of discrete and continuous random variables. We refer to such
random variables as mixed random variables.

The difficulty with mixed random variables X is that we cannot compute either a probability mass
function or a probability density function from the CDF Fx (z). Hence, we don’t have the basic information
needed for computing statistics, or expectations of functions of X.

We will overcome this difficulty by defining a generalized version of a CDF using generalized derivatives
of the CDF. Specifically, at points where the CDF has discontinuities, we represent the derivative using an
impuse §(-) function. In engineering, the impulse function is defined by the following properties:

0(a) =0ifa#0

. 0 ifb<e<0
/5(a)da: 1 ifb<0<ec
b 0 if0<b<c.

/ 0(a—s)g(w)d s=g(a) if g is continuous at a.
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Using this concept, we define the PDF of a mixed random variable X as: fx(z) = 4L Fx(x) where we
use impulse functions to represent derivatives at points where the CDF is discontinuous. Note we can use
this do define a PDF for discrete random variables also. For example,

fx(x) =0.56(x + 1) +0.56(x — 1)
is the density of a random variable taking on the values {—1,1} each with equal probability.

The most important property of impulse functions is that we can integrate them. We use PDFs to
compute probabilities of events by integrating the PDF over the range of values in the event. Thus, for the
above variable X, we can compute the second moment directly, as

E[X?] = /OO 22 [y (2)d 7 = /OO 22(0.55(z + 1)+ 0.50(z — 1))d & = 0.5(—1)% + 05(1)2 =1 .

— 00 — 00

Similarly, assume that the CDF of a mixed random variable X is

0 z <0
Fx(z)=405+05z 0<z<]1
1 r>1.

The PDF can be computed as
fx(z) =0.50(z) + 0.5z 0,103

0 z¢ A

where the indicator function I,c(0,1(3 = {1 cA
x

Note that we still maintain the fundamental relationships between CDF and PDF:

Fe@ = [ fx()ds

Furthermore, for random variables Y = g(X), we still have

MW=EMXH=/ g(0) fx(x)d z .

—o00
whenever the integrals are finite and well-defined.

Example 3.21

A service station has two servers that it can use to handle services: a robot that always completes its service in 10 seconds,
and a human that completes its service in a random time, distributed uniformly between 5 and 15 seconds. When you
request service, you will be assigned the robot with probability 0.6, and the human with probability 0.4. Let X denote
the random variable representing the time at which your service request will be completed. Note that X can take values
between 5 and 15 seconds, a continuous interval.

What is the CDF of X7 Let's compute this using the Law of Total Probability. Let B; be the set of all outcomes
where the robot performs your service, and Bz be the set of all outcomes where the human performs the service. Then,
B4, Bs is a partition of all the possible outcomes. Using the Law of Total Probability,

Fx(z) = PUX < z}] = PUX < @} BiJP[B1] + P{X < z}[B:]P[Bo]

From the information in the problem, P[B:] = 0.6, P[B2] = 0.4. We are also given

0 <10 0 r <5

T

PH{X < Bi] = ;o PHX < Byl={25% 5> 10

{X < a}iB] {1 S X S@Bl= 05 s2ac
1 x>10.

The CDF of X is thus obtained by direct substitution into the formula above. It is clearly the CDF of a mixed random
variable, as it has a discontinuity at z = 10.
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We compute the PDF of X as the derivative of this CDF, as

We can now compute the expected value of X and its variance as:

oo

oo 15
E[X] :/ mfx(:v)d:czo.ﬁ/ :v5(x710)dx+0.04/ rzdr =6+4=10
oo 5

—o0

E[X?] = /_0:0 foX(x)dx:O.G/

—o0

15
26(z — 10)dz + 0.04/ 2’dx
5

oo

3 _ 3
=60 + 0.04¥ =60+ 130/3

Var[X] = E[X”] — (E[X])? = 60 + 130/3 — 100 = %



Chapter 4

Pairs of Random Variables

4.1 Multiple Random Variables

In the previous two chapters, we have seen one way to define multiple random variables on the same proba-
bility space (2, &, P), by using a function ¢(-) to map a random variable X (w) to a different random variable
Y(w) = g(X(w)). However, it is natural in many experiments to generate more than one random variable
for each outcome, and for the second random variable not to be derived from the value of the first random
variable. Consider an experiment where one rolls two six-sided dice. One random variable, X (w), is the
value of the first die, and the other random variable, Y (w), is the value of the second dice. In this case,
notice that Y (w) can have multiple values for each value of X (w), which means that Y (w) is not derived as
a function of X (w). In this experiment, we expect that the values that Y (w) takes and X (w) takes are not
related, and appear uniformly in {1,2,...,6}. We recognize that this experiment was simply the combination
of two independent experiments, and that perhaps we can treat X and Y as random variables from different
experiments. Thus, it would be sufficient to know the individual probability mass functions Px (z), Py (y)
to conduct further analyses.

However, consider an experiment of rolling two dice, but generating two random variables as follows: the
first, X (w), is the sum of the dice outcomes, and the second, Y (w) is the product of the dice outcomes. Now,
X (w) takes values in {2,3,...,12}, and Y (w) takes values in a very different discrete set. Furthermore, their
values are related in unusual ways: if X (w) = 2, then Y (w) = 1. If X(w) = 4, then Y (w) € {3,4}. It is clear
that the values of X,Y depend closely on the full outcome w, and cannot be separated as two independent
subexperiments. In essence, the random variables are now a two-dimensional function g(w) = (X (w), Y (w)),
with values in a discrete subset of #2. The choice of function g(-) defines the range Rx y and will define a
probability mass function in that range. B

Note that both experiments use the same underlying probability space (€2, £, P), with the same outcomes
Q) and the same discrete probability measure P. However, we defined different random variables in the
experiments. We could have generated more than two random variables for the same outcome. Multiple
random variables are the result of a vector-valued function that assigns multiple real numbers to each
outcome in the sample space. Intuitively, we can think of multiple random variables as the observations from
an experiment that simultaneously produces two or more numbers for each outcome. The above discussion
highlights that the relationship between multiple random variables is more general than what we saw in
earlier chapters, where one random variable was derived from the other random variable by a function
transformation.

In this chapter, we focus on generalizing the concepts we developed for scalar random variables in Chapter
2 and Chapter 3 to the experiments that generate two random variables X (w), Y (w) for each outcome. In
later chapters, we generalize this to experiments that generate random vectors of higher dimension for each
outcome.

4.2 Pairs of Random Variables

Formally, a pair of random variables (X, Y) in a probability space (€2, £, P) consists of a vector-valued function
from Q — R2. We also refer to such a pair (X,Y) of random variables as bivariate random variables, or
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joint random variables.

Sample Y .
Space b

[
0 We Evgnt R
outcome
Experiment Random Variables X, Y

Figure 4.1: Bivariate random variables map single outcomes into two numerical values.

Figure 4.1 illustrates how pairs of random variables map individual outcomes w € €2 into an ordered pair
(X (w),Y(w)) € R2. We are interested in computing probabilities on the possible values of X (w),Y (w), such
as the probability that (X (w),Y (w)) € By C R? in Fig. 4.1. Thus, we restrict ourselves to functions where
the inverse image of reasonable sets such as rectangular subsets of R? generate events B € £ for which P[B]
is defined.! Then, we compute such probabilities as P[{w € Q: (X (w),Y (" 7 R 1T =PI~ R

()

For scalar random variables X, we defined the cumulative distribu-
tion function Fx(z) as a function that summarized the probabil-
ity of events defined in terms of intervals of values of X. For bi-
variate random variables X,Y, each random variable has its own
CDF Fx(z) and Fy(y), defined as in the previous chapters as
Fx(z) =P{w e Q: X(w) < z}],Fy(y) = P{w € Q: Y(w) < y}].
However, these CDF functions do not capture how the values of the
random variables relate to each other.

Figure 4.2: The CDF Fx y(z,y) is the
To capture the probabilistic relationship between the two random  probability that the random variables

variables, we define the joint cumulative distribution function {ske values in the shaded area .
(CDF) for values (z,y) € R? as

Fxy(z,y) =P{weQ: X(w) <z, Y(w) <y} :P[{wGQ:X(w) <z}N{weN:Y(w) §y}].

That is, the joint CDF Fx y(x,y) measures the probability of the event of outcomes where the random
variables take values in the semi-infinite rectangle (—oo,z] x (—oo,y]. This is illustrated in Figure 4.2.
Note that this definition of CDF makes no distinction as to whether the joint random variables X,Y are
discrete-valued or continuous-valued.

The joint CDF satisfies the following basic properties:

e Non-negativity: 0 < Fx y(z,y).
e Normalization: lim, , .., Fx y(z,y) = 1.

e Non-decreasing: For any z < Z and y < ¢, Fx y(z,y) < Fxy(Z,7).

1Formally, we define the Borel o-field in )2 as that generated from two-dimensional intervals by countable unions, intersec-
tions and complementation, and we require the function g(w) = (X (w), Y (w)) to be measurable, so inverse images of Borel sets
are events in £.
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e Marginalization: lim,_, ., Fx y(z,y) = Fx(z) and lim,_o Fx y(z,y) = Fy (y).
o lim, ,_ Fxy(z,y)=0and lim, , o, Fxy(z,y) =0.

o Fxy(z,y) is a right-continuous function of = for each y and a right-continuous function of y for each
z. That is,

lim OFX,Y(x +ey)=Fxy(z,y); lim OFX,Y(%Z/ +€) = Fxy(z,y).

e>0,e— e>0,e—

Note that the marginal CDFs Fx(z), Fix(y) can be derived from the joint CDF. The converse, however, is
not true, as is clear from the dice discussion earlier.

Using the joint CDF, we can perform computations of the probabilities that the bivariate random variables
take values in certain intervals, as illustrated in the following example.

Example 4.1
Compute the following probabilities using the joint CDF:

(@) PUX>azju{Y >y} (b)) PH{X <z}U{Y <y}
(€ PUX <2}U{Y>y}] (d) PHweQ:X(w)e€ (x,2]Y(w) € (y.y]}

Answer: Figure 4.3 shows the areas in &2 for the questions, with some ambiguity as to whether the red boundaries are
part of the region of interest. Notice the specific choice of the questions, to determine the type of interval required, as
that determines whether the boundary is included.

For (a), we see the answer is the complement of the joint CDF, as P[{X >z} U{Y >y} =1— Fx v (z,y).

For (b), the answer is a little more complex:

PHX <2} U{Y <y} =P[{X <z}| + P{Y < y}] - P[{X <z} n{Y <y}]
= Fxy(z,00) + Fx,y(00,y) — Fx,y(z,y) = Fx(z) + Fy(y) — Fx,v(z,y)

For (c), we see that {X < z,y,Y <y} n{Y >y} =10, so
PUX <2} U{Y >y} = Fxy(2,y) + (1 - Fx,y(00,9)) = Fx,v (z,y) + (1 = F¥ (y))
For (d), we have

P{w e Q: X(w) € (z,2'],Y () € (y,4]} = Fx,y (@', ¢) — Fxy(z,9) — Fx,y(2',y) + Fx,y (z,y)

®Y) o )

......................

Figure 4.3: Regions of interest for the questions in 4.1.

4.3 Pairs of Discrete Random Variables

4.3.1 Joint Probability Mass Function

A pair of random variables X,Y is discrete if X and Y are discrete random variables. For discrete bivariate
random variables, we define the joint probability mass function Px y(z,y) as follows:
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Definition 4.1
The joint probability mass function (PMF) of a pair of discrete random variables X and Y is

Pxy(z,y) =P{weQ: X(w) ==z, Y(w)=y} = ]P’[{X =z}n{Y = y}]

The joint PMF is zero except at a discrete number of points in $2, each of which has positive probability
mass. The range Rx y of a pair of discrete random variables is the set of all possible pairs of values,

Rxy ={(z,y) : Px,y(z,y) > 0}.

The joint PMF satisfies the following properties:

e Non-negativity: Px y(x,y) > 0.
e Normalization: Z Pxy(z,y) =1.
(z,y)€ERx,y

e Probability of an event: Suppose we have a set B C R, ,. Then,

P[{(z,y) € B =P[{(X,Y) e B}| = > Pxy(ay).
(z,y)€B

When the range sets Rx, Ry of the two random variables are finite, we can visualize the joint PMF as
an array of probability masses. Let Rx = {x1,22,...,2,}, Ry = {y1,92,...,Ym}, as illustrated in Table
4.1. Note that some of the numbers in the array can be zero, as the joint range Rx y is often not equal to
the cross product Rx x Ry.

H Y\X H Tl ‘ T2 ‘ e ‘ Tn—1 ‘ Tn H
Y1 Px y(x1,y1) Px y(w2,y1) i Pxy(zn-1,%1) Px v (Tn, 1)
Yo Px v (21,92) Px v (2,92) Pxy(Tn-1,92) Px v (Tn,y2)
Ym-1 || Pxyv(@1,Ym-1) | Pxy(Z2,Ym—-1) | -+ | Px,y(@n-1,Ym-1) | Px,v(Tn,Ym—1)
Ym Px y(x1,ym) Px y(x2,ym) | -+~ Px y(Tn_1,Ym) Px v (2n, ym)

Table 4.1: Visualization of joint PMF as a table of probability masses

From the joint PMF, we can obtain marginal PMFs for each random variable X,Y as follows: The
marginal PMF Px(z) is just the PMF of X, and can be obtained from the joint PMF Px y (z,y) as:

Px(z)= Y Pxy(x,y).
YyERyY

Note we sum over all the possible values of the variable that we are trying to eliminate, Y. Similarly, the
the marginal PMF Py (y) is just the PMF of Y, obtained from the joint PMF as

Py(y)= Y Pxy(zy).
TERX

In terms of the array representation in Table 4.1, Px (z) is obtained by summing the elements of the column
corresponding to X = z, and Py (y) is obtained by summing the elements of the row corresponding to Y = y.

Example 4.2
Given the details of an experiment, we can compute the joint PMF of a pair of discrete random variables X, Y by using
the underlying probability measure P on the probability space (2, &, P). Specifically,

Pxy(z,y) =P{w e Q: X(w) =2, Y(w) =y}

We illustrate this below.
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Let the experiment consist of rolling two six-sided dice: an outcome w is an ordered pair of numbers (a,b), with
a,b e {1,2,...,6}. Each outcome in Q is equally likely. We define the discrete random variables X, Y as follows:

X(w) = {1 if the sum of dice rolls is odd, ¥ (w) = {1 if the product of dice rolls is odd,

0 otherwise; 0 otherwise.

The range of X,Y is Rx,y = {(0,0),(0,1),(1,0),(1,1)}. To compute the PMF, for each value (z,y) € Rx,y, we
compute the set of outcomes w € () that map to that value, and compute the probability of that set. For instance,
{we: X(w)=0,Y(w) =0} ={(2,2),(2,4),(2,6), (4,2), (4,4), (4,6), (6,2), (6,4), (6,6) }.
Thus, 9 )
Pxy(0,0) =P{w e N: X(w)=0,Y(w) =0}] = w61
What about Px y(1,1)? The set {w € 2: X(w) = 1,Y(w) = 1} = (), because no pair of dice outcome can have an odd
sum and an odd product! Thus, Px,y(1,1) = 0.

To complete the PMF, note that
{we: X(w)=0,Y(w) =1} ={(1,1),(1,3),(1,5),(3,1),(3,3),(3,5), (5,1), (5,3), (5,5) },

so Pxy(0,1) = i also. Hence, by normalization, we must have Px y(1,0) = % We can verify this, as {w € Q: X(w) =
1,Y (w) = 0} will have the remaining 18 outcomes.

1

1120 2/20 2/20 0 0
220 4/20 1/20 2/20 y
‘ ' NV 2417 |
0 1/20 3/201/20 -
3 /7 7‘7
0 120 0 0 %
I
X I 2 3 4 Y

Figure 4.4: Figure for example 4.3.

Example 4.3

Consider a pair of random variables X, Y with joint PMF as illustrated in Figure 4.4, where the array representation of the
joint PMF is shown on the left. Compute the probability that (X,Y") take values in the set B = {(z,y) : ¢ € [1,2],y €
[2,3]}. Also, compute the marginal PMF functions Px (z) and Px (y).

To compute P[{(z,y) € B}], we use the joint PMF and add the probability over the masses at the points in B:

2 1 4 7
P[{(I,y) S B}] ny(l 2)—|—PX y(l 3)—|—PX y(2 2)—|—PX y(2 3) =0+ %—F%—F% %

For the marginal PMFs, we first compute the PMF of X:

2 1 3
=Y Pxy(Ly)=Pxy(1,3)+ Pxy(l,4) = o~ + o~ =

20 20 20
yERy
1 1 4 2 8
2):ZPX,Y(2,y) %-‘r%-f—%‘F%:%
YyERy

3 2 6
= > Pxy(By)=o-+ oo+ o0 =102

YERy

4) = Z Pxy(4,y) = i+7:3

yERy
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For the marginal PMF of Y, we compute:

1
Py(1)= Y Pxy(z,1)=Pxy(2,1) = %
TERx
5
Py(2)= > Pxy(2,2) = Px,y(2,2) + Px,y(3,2) + Px,v(4,2) = %
rERX
9
Py(3)= Y Pxy(x,3)=Pxy(1,3) + Pxy(2,3) + Px,y(3,3) + Px,v(4,3) = 20
rzERx
5
Py(4)= > Pxy(z,4) = Pxy(1,4) + Pxy(2,4) + Px,y(3,4) = %
TERX

4.3.2 Conditional PMF

For discrete random variables X in a probability space (€2, €, P), we defined the conditional probability mass
function of X given observation of an event B € £ as

P[{s: X(w) =z} N B
Px|p(r) = P[B ,
undefined otherwise.

P[B] >0

When we have a pair of random variables X,Y, the set B can be defined in terms of the random variable
Y as B ={w € Q: Y(w) = y}, which we write as an abbreviated {Y = y}. For this case, the following
relationships hold:

PUX =2} N Bl = P{X =2} n{Y = y}] = Pxy(z,y); P[B] =P{Y =y} = Pr(y)

Thus, we define the conditional PMF that X = z given that Y = y is observed as

PX,Y(xay)

Pxy (zly) = Py(y)
undefined otherwise.

Py(y) >0

Note the following: if the numerator Px y (z,y) > 0 for some z,y, then Py(y) > 0 and Px(z) > 0 as
obtained by marginalization. Hence, the reason for the undefined clause in the above equation is to handle
the case when both numerator and denominator in the ratio are zero, in which case we don’t define that
conditional probability.

Similarly, we define the conditional PMF that Y = y given that X = x is observed as

PX,Y (CE, y)
Pyix(ylz) =4 Px(x) ’
undefined otherwise.

Px(x) >0

In essence, the conditional probability mass function is the ratio of the joint PMF to the marginal PMF of
the variable being observed. When both Px (z) > 0, Py (y) > 0, we can also represent the joint CMF as the
product of the conditional CMF and the marginal CMF, as

Pxy(z,y) = Px)y (zly) Py (y) = Py|x (y|z)P(z).
We refer to this property as the Multiplication Rule.

The conditional PMF Px|y (z]y) is a valid probability mass function on Rx, and thus satisfies the
following basic properties of probability mass functions:

e Non-negativity: Pxy(z|y) > 0 and Py|x(y|z) > 0 for all z € Rx, y € Ry.
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e Normalization: Z Pxy(z]y) =1 for any y € Ry and Z Py x(ylr) =1 for any x € Rx.
rERXx YyERy

e Additivity: For any event B C Rx, the probability that X falls in B given Y =y is
PB{Y =y} = Z Px |y (zly) for y € Ry.
rEB
For any event B C Ry, the probability that Y falls in B given X = z is

PB{X ==z}] = > Pyx(ylz) for z € Rx
yeB

Example 4.4
Consider two random variables X, Y with the joint PMF function used in the previous example 4.3, illustrated in Figure
4.4. Compute Pxy(z|y) for y = 2,y = 3. The table below has the joint PMF of X,Y for this example. To compute

HﬂXHl\fMH4H
1 |0 ]==1]01]0
Qoﬁii
s || 2|22
20 | 20 | 20 | 20
NEIEIE Ik

Table 4.2: Visualization of joint PMF as a table of probability masses

Px |y (x]3), we restrict the the value of Y to the row Y = 3. We sum the probability masses in that row to get
Py (3) = %. We use these to rescale the values in that row to get:

&ﬂmbpgngizg
pmma—ﬂggm_g_g
meazﬁggmzﬁzé
Px v (4]3) = P};ZE;S) _ zjz _ g

Notice that Px |y (z[3) is proportional to the row Px,y (z, 3), rescaled by dividing by Py (3) sothat - .  Pxy(z[3) =
1.

Similarly, Px|y (z|2) is computed as follows: Py (2) =3, r. Pxyv(z,2) = 2. Then,

Pxy(1,2) 0
20

Pxy(2,2) 5 1

Payy (212) = Png) )om_1
20

Pxy(3,2) = 3

Pyy(32) = Hé):%:E
20

P (4‘2) PXYY(472) _ % _ 1

Xy T A2 %5

The techniques we developed for conditional probabilities can be extended for conditional PMF functions,
as follows. Let Ry = {y1,y2,...} denote the discrete range of the random variable Y. Then, the events
{we:Y(w)=unl{weQ:Y(w)=1ys},... are mutually disjoint if y; # yo, because Y is a function, so
there is only one value of y associated with an outcome w € €. Furthermore, they are collectively exhaustive,
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because every w € {2 must be mapped to some y € Ry. Thus, we can derive a version of the Law of Total
Probability for pairs of discrete random variables X,Y , which is:

Law of Total Probability:

Px(x) = Y Pxpy(zly)Pr(y)
YyERy

Py(y)= > Prix(yle)Px(x) .

rERXx

We can also develop a version of Bayes’ Rule for pairs of discrete random variables, as:

Bayes’ Rule:

Pxy(z,y) Py x (y|lz)Px ()
Py(y) Py (y)
Py x (y|z)Px ()
Y wrery Pyix(yla')Px (2')

Pxy (zy) =

Example 4.5

Consider an X-ray source that generates photons with a specified rate A photons per unit time. The emitted photons go
through a mask that absorbs each photon with probability p, independently for each photon. For instance, in computed
tomography machines, X-ray sources are typically modulated with masks to attenuate low-energy rays during X-ray imaging,
as they contribute little to the quality of the image and get absorbed in body tissues.

Assume we operate the X-ray source for a single unit of time. The number of photons emitted is represented as a
Poisson random variable with parameter A\, denoted by N. That is,

n

P{N = n}] = Px(n) = %e**, n=0,1,2,...

We are interested in the number of photons that make it through the mask. That is a second random variable X. Note
that if we know that N = n, then we can characterize the type of random variable that X is: There are n independent
trials for photons to go through, and the success rate of each trial is (1 —p). Thus, conditioned on N = n, X is a binomial
random variable with parameters n, (1 — p). That is,

P{X = k}{N = n}] = Px|n(kln) = <Z> 1—p)fp" " k=1,2,...,n.

With these ideas, we can define the joint PMF of N, X as the product of a conditional probability and a marginal
probability, as

n D
Py x(n,z) = Pxn(z|n)Py(n) = (m> (L =p)"p" " re *.
The range of values for N, X require that X < N, so it is
Ryx ={(n,z):n€{0,1,2,...},z€{0,1,...,n}}

We can now perform computations that would be of interest, such as finding the
marginal probability of X, the number of photons that make it through the mask.
We get the marginal probability of X from the joint probability of N, X by marginal-
ization over the values of N. Notice that, for a particular value of X = z, we have
Py, x(n,x) = 0,n < z, as illustrated in the figure on the right.
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Thus, the marginal probability of X is computed as:

- - D N .
Px(z) = E Py x(n,z) = E (Z) (1-p)*p" zﬁe * where the lower sum limit is 2 because of the range Ry x
n=0 n=x :
oo} oo
n! T n_z/\n Y A" T _n—xr _ —A

— _ z — — |

= 2 2t a1 1-p)°p e = nE:T ] P (1 —p)*p" e " (cancel the n! terms)
(/\ 1—p

= 7|))6_)‘ Z % (substitute n — z = n')
€ n’)!
n/=0

(A(l —p))ze—xexp _ (A(l _p))ze—)\(l—p)

(recognizing the sum is an exponential.)
x! x!

Remarkably, we have just proven that the number of photons that make it through the mask is also a Poisson random
variable, with parameter A(1 — p), which is the product of the incoming photon intensity times the probability that each
photon makes it through. Thus, we know that the expected number of photons that make it through the mask is A(1 —p),
and the variance of the number of photons that make it through the mask is also A(1 — p).

The above result can be stated generally as: A Poisson random variable with intensity A\ that undergoes independent
sampling for each instance with probability p remains a Poisson random variable with a reduced intensity p(1 — A). This
result has many applications in engineering: For instance, consider a fork in a traffic road, where cars randomly choose
with probability p to take the left fork and with probability (1 — p) to take the right fork. If the number of arrivals to the
fork is modeled as a Poisson random variable with intensity A, the number of departures on the left fork will be a Poisson
random variable with intensity Ap. Similarly, the number of departures on the right fork will be a Poisson random variable
with intensity A\(1 — p).

Many sensor systems that count particles using physical mechanisms are modeled similarly. For instance, Geiger
counters for radiation detection interact with a-particles, and detect each particle with a given probability. X-ray detector
panels use scintillating materials that interact with incoming X-ray photons, and convert each photon to electrons with a
given probability. If the arrival of particles is modeled as a Poisson random variable, the measured counts in these systems
will also be Poisson random variables, albeit with reduced intensity.

Example 4.6
Consider the model of the previous example 4.5 for the pair of random variables N, X. Assume we observe that X = 5.
What is the conditional probability distribution of N, given the information that X = 57

PN,X(’I’L, ZB)

To solve this, we apply Bayes' Rule for discrete random variables, as Py |x (n|z) = Px(z)
X (T

Fortunately, we have expressions for all of these from the previous problem:

n P A1 —=p)" oo
Py x(n,z) = <x>(1—p) P e e Px(x)zi( ( 5 ) e MmP)

Hence, for observing X = z,

Py x (n|z) Pyx(nz) ()1 =p)"p" 2™ Inza) gy (L - )" 5re™
Nix(n|z) = = v - )
Px (z) %6_“1_@ (a-n)" sap)

!

where the indicator function Iy, >, is 1 if the condition is true (n > ), and zero otherwise. Canceling the appropriate

factors in the numerator and denominator, we get

]{nzw}(n%nx)[(l — p)mpnizei)‘ _ AP
(A —p)Teram =Y

—x_—A
n 16 p

Prix (nfz) = P

n—ux)!
Substituting x = 5 above gives the desired conditional PMF for N.

We can recognize what type of conditional distribution is Py x (n|z) by defining a derived random variable, conditioned
on knowing X =z, as N’ = N — z. Note that

)\p _ ()\p n' B
Prix(nlz) = I{nzx}he A= I{n'zo}(T,))!e AP = Py x (n'|z).

)nfz
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Thus, conditioned on X = z, N has the PMF of the sum of x and a Poisson random variable with intensity Ap. Notice
that the gap from X = x to N = n corresponds to absorbed photons, and the probability of absorption for each photon
is p. As discussed in example 4.5, the number of absorbed photons is a Poisson random variable with intensity Ap. Using
this reasoning, we could have obtained the above answer directly with no computation.

4.4 Pairs of Continuous Random Variables

For discrete scalar random variables X, the PMF Px(z) described how probability mass accumulated in
discrete points in the real line R. In contrast, a continuous random variable X spreads its probability
over the real line R so that there is no probability mass at any point, but instead we have a probability
density function (PDF) fx(z), measured in probability per unit length, that describes how probability is
accumulated. Indeed, for a random variable X to be continuous, its cumulative distribution function (CDF)
Fx (x) must be differentiable almost everywhere, and

4 Fx(z) if Fx(z) is differentiable at z,
fx(x) = .
arbitrary elsewhere.

We want to extend these concepts to bivariate random variables (X,Y") defined on a common probability
space (2,&,P). In the previous section, we saw how we defined discrete bivariate random variables, and
characterized their properties using the joint PMF function Px y(z,y). We define the concept of jointly
continuous bivariate random variables as follows.

Definition 4.2
A pair of random variables X,Y are said to be jointly continuous if their joint CDF Fx y(z,y) is continuous, and
differentiable almost everywhere, so that there exists a joint probability density function fx y(x,y) such that

T ry
Fxy(z,y) = / / fxvy(@ y)dz'dy .

An implication of this definition is that there is no region B C R? where the area of B is zero, and the
probability P[{w € Q : (X(w),Y (w)) € B}] > 0. Thus, there are no points which have positive probability
masses, and there are no lines or curves with zero area that have positive probability of occurring.

4.4.1 Joint Probability Density Function

From the above definition, the joint probability density function (PDF) fx y(x,y) is computed as

%Fx’y(m,y)axay if Fx y(z,y) is differentiable at (z,y),

fX,Y(-Tay) = {

arbitrary otherwise.
The range Rx y of a pair of continuous random variables is the set of all possible pairs of values,

Rxy = {(z,9) : fxy(z,y) > 0}.
The joint PDF has some structural properties that we highlight below:

e fxy(z,y) > 0forall (x,y) € R2. This follows from the fact that the joint CDF Fy y (z,y) is monotone
non-decreasing, and thus has non-negative derivatives.

. ffooo ffooo Ixy(@,y)d a'd y = Fx y(0o,00) = 1. That is, the total volume between the surface map
of fxy(x,y) and the z-y plane must be equal to 1.
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Being a density and not a probability, the joint PDF can take positive values greater than 1.
FxAX,Y)

Figure 4.5 illustrates the joint PDF of a pair of jointly continuous
random variables X, Y. The top figure shows a small area AA around
a point (z,y). the probability that (X,Y) take on values in AA is
approximately computed as

P{(X,Y) € AA} ~ fxv(z,y)|AA]

where |AA] is the area of the region AA. This is approximately the vol-
ume of a column over AA, with height fx y(z,y), that is, the volume
under the fxy graph that is above the area AA.

For any subset A € 2 with positive area, we compute the probability
that (X,Y) take values in A using the joint PDF as

PU(XY) € Al = [[ fevizadady
A Figure 4.5: Illustration of joint PDF
used for computation of probabili-
ties.

Example 4.7
Consider a continuous random variable X defined on a probability space (2, £, P). For a continuous function g : ® — R,
we define the random variable Y = g(X). Is the pair (X,Y") a jointly continuous pair of random variables?

The answer is no. To make this discussion simpler, let g(x) = x, and define the region B = {(z,y) € ® : z = y}.
Note that this region is a line in the z-y plane, and has no area: |B| = 0. However, it is clear that P[{(X,Y) € B}] =1,
so that there is probability mass for a set of zero area. Hence, the pair of random variables is not jointly continuous.

You can extend this argument for any continuous function g(-). Basically, the set B = {(z,y) € R : © = y} represents
a continuous line in the x-y plane which has zero area, and the probability that (X,Y") take values in B is one. This
argument can also be extended to discontinuous functions g(-).

Example 4.8
Consider a pair of random variables (X,Y") with joint PDF given by

1 0<z<1,0<y<l,
0 otherwise.

Ixy(z,y) —{

Note that the plot of this joint PDF is a cube of height 1 over the rectangle of area 1, and hence this join PDF satisfies
the properties highlighted above: It is nonegative, and it integrates to 1, as the volume under the graph is 1.

Ty
What is the joint CDF of (X,Y)? By definition, this is Fx,y (z,y) = / / Ixyv(z,y)d zd y.

Note that this integral is zero as long as either x < 0 or y < 0, as
the integral takes place over a region where fx y(z,y) = 0. Further- surface
more, if £ > 1 and y > 1, then Fx y(z,y) = 1, because we inte-
grate over the entire region where fx y(z,y) > 0, namely the range
Rx,y. Elsewhere, we integrate to compute Fx,y(z,y). To make this
easier, lets rewrite the joint PDF of X, Y using indicator functions, as:
fxv(x,y) = Uzeo,13 I{yeo,1y- Then, for x> 0,3 > 0, we have

x y
Fx,y(z,9) =/ / Ltacroayliyeoand zd y

z y
= (/0 Tacpoapd w)(/o Iiyepo,ayd y) = min(z, 1) min(y, 1). Figure 4.6: Joint CDF for Example 4.8.

Figure 4.6 shows a plot of the resulting CDF.
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Putting all the equations together yields

min(z,1) min(y,1), = >0,y >0
-0 otherwise.

Fx,y(z,y) = {

Example 4.9
Consider a pair of random variables (X,Y") with joint PDF given by

2 0<a<y<l,
0 otherwise.

Ixy(z,y) = {

Compute the following probabilities: What is the probability that X +Y > 1?7. What is the probability that (X — 0.5)% +
(Y —0.5)% < 0.25?

A diagram is helpful to identify the sets involved in the answering the questions: First,
the range Rx,y is a triangle in the plane, with corners (0,0), (1,1), (0,1). This is y
illustrated in Figure 4.7, which shows a plot of the joint PDF of (X, ) W|th the range 2
Rx,y outlined in the z-y plane. The intersection of the region {(z,y) : z +y > 1}

is highlighted in orange. Let A = {(z,y) : z+y > 1,0 < z g y < 1} denote

that intersection region. The probability that X + Y > 1 is the probability that 0 1 *
(X,Y) take values in A, which is computed from the join PDF as P[{(X,Y) € A}] =

Jatxy (@ y)d ad y. Figure 4.7: Joint PDF for Ex-

Fortunately, the joint probability density function is constant (= 2) in the region A4, so ample 4.9.
we can compute the integral using simple geometric ideas: The volume of the region
between the graph of the joint PDF and the area A is just the height times the area
of the triangular base. The height is 2, and the triangle is seen to have a base of 1,
height 0.5 so its area is 0.25. Hence, P[{(X,Y) € A}] =2 x 0.25 =0.5. Y

Similarly, Let B = {(z,y) : (z — 0.5)*> + (y — 0.5)> < 0.25} N Rx,y. This area
is highlighted in Figure 4.8. Then the probability that (X — 0.5)® + (Y — 0.5)?

0.25 is the probability that (X,Y) takes values in B, which is P[{(X,Y) € B}] = ' 1 x
ffB fx,v(z,y)d xd y. Reasoning as above, this is 2 times the area of B, which can
be recognized from Figure 4.8 to be a half circle with radius 0.5. Hence, Figure 4.8: Joint PDF for Ex-
le 4.9.
P{(X,Y) € BY) = 2 x (0.57(05)") = T . ampie

4.4.2 Marginal PDF

If XY are jointly continuous random variables, then X and Y are continuous random variables individually,
and have probability density functions fx(x) and fy (y), called the marginal probability density functions.
These can be computed from the joint CDF of (X,Y), by computing the marginal CDFs of X,Y and
differentiating to obtain the marginal pdfs:

Fx(z) = Fxy(z,00) = /:E /jo fxy (2 y)d yda'
fxla) = e = [ oy
Fy() ny(ooy / / fXny)dl'dy

fY(y)**FY / fxy(@ y)d z

Alternatively, we obtain the marginal PDF of X at X = x directly from the joint PDF by integrating
the joint PDF over all values y such that (x,y) € Rxy. The result is still a density, not a probability.
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Example 4.10

l—z—y) 0<z<(l-y)<1
Let X,Y be jointly continuous random variables with PDF given by fx.y (z,y) = cl-z-y) 0<z<(l-y)<

0 otherwise,

where ¢ is a constant that needs to be determined so that ffooo fx,v(z,y)d xd y = 1. Find the value of ¢, and then the
marginal PDF fx(z). Also, compute the probability that X < Y. y

To begin with, it is always useful to visualize the range Rx,y where the joint PDF is 1 Linex+y=1
non-zero. In this case, it is a triangle defined by the inequalities 0 <z < (1 —y) < 1.
Figure 4.9 shows this area, a triangle defined by the three inequalities x > 0,y >
0,z +y < 1. This will help us evaluate the limits of integration for computing the
marginal densities or the constant of integration. Let's compute ¢ first. We can do
this with geometry if we visualize the graph of the joint PDF as a pyramid, as shown
in Figure 4.10 because the joint PDF is a linear function of x,y. Since we know the
volume of a pyramid is (1/3)x base area X height, and the height is ¢, the volume
under the joint PDF is

1 X

Figure 4.9: Range Rxy.

/ fxv(z,y)dzdy = % X % X c= % =1,

Rxy
which implies that ¢ = 6.

Alternatively, we compute this more generally from the double integral directly. Using
the diagrams of Figures 4.9 and 4.10 to set the limits of integration, we obtain:

1 11—z
J[ sty = [ ([ e-a-pay) i _ |
0 0 Figure 4.10: Joint PDF.
Y

Rx,

and we get the same answer, ¢ = 6.

To compute the marginal fx (z), we integrate the joint PDF over the range of possible values of Y with nonzero joint
PDF for a given value X = z. Using the diagram of Figure 4.9 to set limits, we see that the range of values of Y for a
given X =z isy € [0,1 —z]. Thus,

fx(z) = /_OO Fxy (2, y)dy = { o 6(l—z—y)dy=3(1—-2)° ze€[0,1]

0 otherwise.

Note that f_oooo fx(z)dz = 1, which is the normalization property of PDFs. By symmetry, we also get that the marginal
_ 3(1-y)* yelo,1
PDF of Y is fy (y) = 4 L~ ¥ v E01]
0 otherwise.

Finally, we compute the probability that X < Y. If we are really clever, we see that the line X = Y bisects Rx y
into two equal regions, so the volume under the joint PDF in the region {(z,y) : (z,y) € Rx,v,z < y} is exactly 1/2.
However, let's avoid cleverness and compute this as an integral, as one would have to do in a more general setting. The
key is to visualize the region, and set the right limits for the integrals. We note that the maximum value for X such that
X <Y is 1/2, and that, for each value X = z, the region of values of y that we are interested is y € [z,1 — z]. Then,

1/2 rl-=z 1/2
PX <Y} = /0 (/ 61—z — y)dy)ds = /0 S0 -2wpde=1

Example 4.11
Consider a pair of continuous random variables X, Y, uniformly distributed on

the unit disk with radius 1, centered at (0,0). Thus, the joint PDF of X,Y is radius = 1
given by area=T1
PR a? +y? <1,
Y710 otherwise. X

The joint PDF of X,V is illustrated in Figure 4.11.
For this problem, we want to compute E[X],E[Y]. We also want to compute
the marginal PDFs fx(z), fy (y). Note that, by symmetry of the density, both

E[X]=0,E[Y] =0. Figure 4.11: Example 4.11.
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To compute the marginal density, it is useful to examine the range Rx,y illustrated in Fig. 4.11. For a given value of z,
the values of y range from —+/1 — 22 to v/1 — 2. Then, the marginal density fx () is computed as:

o] 1—z2 /1T _ 2
fx(x):/_ fx,Y(ﬂC,y)dy:/_m%dyzzl%-

By symmetry, it is clear that

Example 4.12 e 0<y<z<oo
Consider joint continuous random variables X, Y with join PDF fx vy (z,y) = { N :

0 otherwise
Compute the marginal PDFs for X,Y, and compute the probability that X + Y < ¢ for a constant ¢ > 0.

It is useful to visualize the region Rx y where the joint PDF is positive. This is an infinite triangle in the -y plane,
with origin at (0,0), bounded by the z-axis and the line x = y. Using this to compute limits, we see that, for a fixed z,
the range of possible values of y is from 0 to x; for a fixed y, the range of possible x is from y to co. Thus,

> e 'dy=xe " x>0
fx(x) :/ Ixv(z,y)dy = Jo v o

o 0 otherwise.
[TeTdr=€eY y>0

fr(y) = /:X’ Ixyv(z,y)dz = {Oy

otherwise.

To compute the probability that X +Y < ¢, for ¢ > 0, visualize the area in the z-y plane where (z,y) < ¢ and
(z,y) € Rx,y: This is a triangular area, where y € [0,¢/2], and z € [y, c — y]. Denote this area as B. This helps set the
limits for the integrals to compute the probability as:

c/2 c—y
X +y <l = [[ vty = [ ([ e ranay
B 0 Y
c/2
= / (e —e Vdy=1—e?—e e =(1—-e %
0

This last computation is useful if we wanted to define a derived random variable Z = X + Y. We have just computed

1— —z/2)\2 >
Fo(s) =B{{Z <2} =B{{X +Y <=0 7€ ) 220
0 otherwise.
From this, we can compute the PDF of Z as
d (1—e*/?)e %2 2 >0,
z2)=—Fz(2) = -
J2(2) dz 2(2) {O otherwise.

This is a useful technique for computing the PDFs of derived random variables: Compute the CDF first, then differentiate
to get the PDF.

4.4.3 Conditional PDF

We want to extend the concept of conditional probability to jointly continuous random variables. Let X, Y be
jointly continuous random variables, and define the set A = {(X,Y’) € B} for some B C Ry y. Conditioned
on observing that A has occurred, we define the conditional CDF of X,Y given A using the definition of
conditional probability for events, as
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Fy.yia(z,yl4) = {W P[A] > 0
undefined P[A] =0 .
(—oc,z]x(f[oo,yms Ixy (@y)dedy -
= éf fx.v (z,y)dzdy [A] >0
undefined PlA] =0 .

That is, we restrict the probability to values (x,y) € B, and rescale the probability so that it satisfies the
normalization properties. From this, we can obtain the conditional density as

o 0
Ixyialz,ylA) = %@FX,Y\A(%ZJ‘A)'

This yields the result:

Hed)  (2,y) € APA] >0
fX,Y|A(xay|A) = 07 (.’I?,y) ¢ AJP[A} >0

undefined P[A]=0.

which has the same interpretation we saw previously: we restrict the range of the conditional density to
values in the observed set A, and we rescale the conditional density to satisfy the normalization property.

We are also interested in the conditional probability of X given observations of values of Y. Consider
first observing the event A = {Y < y}. From the definition of conditional probability for events,

PUX <zynd] [T [l Fxy (@, y)da'dy’
P[A] a Fy(y) '

Fxa(z|A) =

for all y such that Fy (y) > 0. From this conditional CDF, we compute the conditional PDF of X given A,
as

d Y fxy(x,y)dy
z|A) = —F r|A) = /== .
Ixja(z|A) e x|A(7]A) ()
2 0<z<y<l

i . Let A={Y <0.5}.
0 otherwise.

Example 4.13
Let X,Y be jointly continuous random variables with joint PDF fx vy (z,y) = {

Compute the conditional density of X given that A is observed.

Note that Rx,y, the range where the joint PDF is positive, is a triangle formed by
the lines x = 0,z = y,y = 1, which helps us identify the limits of integration. This is
shown in Figure 4.12. Proceeding as above,

0 y
P[A] = Fy(0.5) = / 5(/ 2dx)dy = 0.25 (2 times the area of orange triangle)
0 0

fxia(z|A) = - 0.25

0. .
SO Py (@y)dy' (L2 9p 4c(0,0.5)
Fy(0.5) 0 otherwise.

Figure 4.12: Range Rx y.

What if we observe the event A = {Y = y}? In this case, P[A] = 0, so we cannot apply the definitions of
conditional probability for events. We will use a limiting argument to define a conditional PDF of X given
observation of the event {Y = y}, as follows.

Define the event B = {Y € (y,y + A]} for some A > 0. Then, P[B] = Fy(y + A) — Fy(y). Assume we
select y so that P[B] > 0; that is, we select y in the interior of Ry. Then, we define the conditional CDF
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and PDF of X as:

z A
Fxp(z|B) PUX <az}nB] [T ) fxv(ey)de'dy
X = — ?
From this conditional CDF,we get the density by differentiation:
A
f;+ Ixy(z,y)dy

JPE pr )y’

d
Ix|(z|B) = %FX\B(QU\B) =

If we take limits as A — 0 in the above expression, both the numerator and denominator go to zero.
However, using L’Hopital’s rule, we can compute the limit as:

A A
B e y)dy s ) @Ay fry(ey)
AT y+A Ny ~ A5 d(yta Ndy' o fyy)
fy fY(y) Yy aAn fy fY(y) Y

as long as fy (y) > 0. This allows us to define the conditional PDF of X when Y = y as this limit:

Definition 4.3
Given two jointly continuous random variables X, Y, the conditional PDF of X given that Y = y is given by

fx,v(z,y)
JX, ¥ AT/ > O
Fxiv aly) = { A

undefined  otherwise.

Similarly, the conditional PDF of Y given X = z is defined as

Ix,y(z,y) fx(z)>0
frix(ylz) = { Fx(@) x(x)

undefined  otherwise.

The conditional PDF of X given Y = y is a probability density for the continuous random variable X,
and thus satisfies the following basic properties of probability densities:

e Non-negativity: fx|y(z|y) >0 and fyx(y|z) > 0 for all x and y where fx(x) > 0, fy(y) > 0.

e Normalization: / Ixy (z|ly) dz =1 for any y such that fy(y) > 0, and / fyvix(ylz)dy =1 for
any x such that fX(x) > 0. B

e Additivity: For any event B C Rx, the probability that X takes values in B given Y =y is

P{X € B}{Y = y}] = /B Fxry (xly) dy.

For any event C' C Ry, the probability that Y takes values in C' given X = x is

PUY € WX = )] = [ fyixlole) de
The techniques we developed for conditional probabilities also apply to conditional PDFs:

e Multiplication Rule: fx vy (z,y) = fxv(z|y)fy (y) = fyx (]z)fx (v).
e Law of Total Probability:

fx(z) = /_oo fxy(z,y)dy = /_OO Ixpy (@ly) fy (y)dy

frt) = [ " yix i) fx (@) de
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e Bayes’ Rule:

fXY(zay) ~ fyix(yl2) fx (2)
fxpy (zly) = S A
frix(yle) = JW

Example 4.14

Consider two jointly continuous random variables X, Y, with joint PDF given by
6l—z—y) 0<z<1l-y<1
0 otherwise.

Ixy(z,y) —{

This is the same joint PDF considered in Example 4.10, illustrated in Figures 4.9 and 4.10. Let a € (0,1). Compute
fxy (zla).

31—y)?* yelo,1]

Note that in Example 4.10, we computed the marginal PDF of Y as fy (y) = )
0 otherwise.

From the definition of conditional PDF, we have

fx,y (z,y) .
; if >0
fX|y(:E‘y) = { fY(.y) Iy (y)

undefined elsewhere.

We need to be careful to account for limits in substituting in the numerator. Note that, if Y = o, then fx y(z,a) =0
if t>1—«. Thus,

6 T—o T—o .
Igzl a)2) = 2(}1 a)2) if a e (0? 1)7 z € (07 1- CZ),

fxiy(zla) =40 if a € (0,1), z¢ (0,1 —a),
undefined a ¢ (0,1).

4.5 Conditional Probability and Expectation

Given two discrete random variables X,Y, we have defined the conditional probability mass function
Px |y (z|y) as the probability that X = x given that we have observed the event Y = . Using this conditional
PMF, we define the conditional expected value of a function ¢(X) given Y =y as

Elg(X)|Y =yl = > g(z)Pxpy(zly).

rERx

Note that this expected value is a function of y, as we are averaging ¢g(X) over the conditional PMF of
X given Y = y. Denote h(y) = E[g(X)|Y = y]. Then, we can compute the expected value of h(Y") over the

PMF of Y, as
V)= > h(y)Pr(y)

YyERy
Let’s combine the last two equations, to get:
E[r(Y)] = E[E[g = > Elg(X)[Y = y|Py(y)
YyERy

= Z Z ) Pxy (z|y) Py (y)
yERy z€Rx

= 2 2 9@Pxy(@y)
yERy x€RXx

= E[g(X)]
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This last result is known as the smoothing property of conditional expectations. Basically, ]E[]E[g(X )|Y]] =
E[g(X)]. In particular, this is true for the function g(X) = X, so that E[E[X|Y]] = E[X].

We can obtain a similar result for jointly continuous random variables X,Y. Given a function g(z) we
compute the conditional expected value of g(X) given Y = y using the conditional PDF of X given Y =y
as

B0 =v) = [ gle) v (aly) da.
Note that this will be a function of y, which we denote as h(y). Proceeding as before,
B[(Y)] = BEGCOIY) = [ Blg(OIY = sl () dy

/jo (/jc 9(x) fxy (zly) dx) fy (y) dy
— /_oo /_OO 9(x) fxy (z|y) fy (y) dz dy.

_ [ Z [ O; Fxx(@.y) dody. = Elg(X)]

which shows the smoothing property of conditional expectations also holds for jointly continuous random
variables.

1 z€(0,1)

0 otherwise.

Example 4.15
Let X be a continuous random variable, uniformly selected in (0,1). Hence, fx(z) = {

Given that X = z, select Y to be a uniform random variable on [0, z]. That is,

% y € ]0,x]
.0 otherwise.

fyix(ylz) = {

Combining these two densities, we have

fxy(z,y) = frix(ylz) fx(z) = {T O=y=w=l

0 otherwise.

Compute E[X|Y = y], and Var[X|Y = y].

We first compute the marginal density of y, given by

frw) = [ 1 do=-In).

Note that this integrates to 1 for y € [0, 1], as a density should. To compute the conditional density of X given Y =y, we
need to compute the conditional density fx |y (x|y), which we do using Bayes' Rule and the Law of Total Probability as

1
Ixy(zly) = fy‘xgcyfg{x(m) = fy””(y)7 0<y<z<l1
1
===l p<y<a<

Note how the limits of integration were evaluated for computing fy (y), as we know that x € [y,1]. Using this
conditional density, we get

E[X]Y =] :/j:oxfx‘y(x\y)dxz/y xxl;;y)dx: anzy;, y € (0,1)

Let's now compute E[X] as:

E[X] =E[E[X|Y = y]] :/01y_lfy(y)dy:/0 y_l(—ln(y))dy:/ol(l—y)dy:é



4.6. INDEPENDENCE OF PAIRS OF RANDOM VARIABLES 109

which is exactly what it should be, as X was a uniform random variable on [0, 1].

To compute the conditional variance of X given Y = y, we compute first E[X?|Y = y]:

E[X?|Y = ]—/1a:2 -1 dx = -1 /1xdx
Y 0 zIn(y) In(y) Jo
-1

21n(y)

Var[X |y =y] = E[X*)Y =y] - (E[X|Y = y])z - 21;(131) - Ellnzyz)/;

4.6 Independence of Pairs of Random Variables

In a probability space (2,&,P), two events A, B € £ are called independent if P[A N B] = P[A]P[B]. For
pairs of random variables X, Y, the concept of independence is stronger: we want events of the type
A={X € C C Rx}and B={Y € D C Ry} to be independent for any choice of C C Rx,D C Ry.
Fortunately, there is a simple way to check for independence without checking all such pairs of events.
If the sets C = (—o0,z], and D = (o00,y], then P{X € C} Nn{Y € D}] = Fxy(z,y). Furthermore,
P{X € C}] = Fx(z) and P[{Y € D}| = Fy(y). Thus, independence requires that Fx y (z,y) = Fx(z)Fy (y)
for all (z,y) € R2. It turns out that this condition is also sufficient to guarantee that P[{X € C} N{Y €
D} =P[{X € X}P{Y € D}] for any sets C' and D defined by unions and intersections of intervals (Borel
sets), because all those probabilities can be computed from the joint and marginal CDF's.

Definition 4.4
A pair of random variables X and Y are independent if and only if Fx y(x,y) = Fx(z)Fy (y).

For pairs of discrete random variables, the above condition leads to a characterization of independence
in terms of the probability mass functions, as follows:

Lemma 4.1
A pair of discrete random variables X, Y are independent if and only if Px y(z,y) = Px(z)Py (y).

Proof: To show the if part, assume Px y(x,y) = P(x)P(y). Note this means Rxy = Rx X Ry, because
Px y(z,y) > 0 implies both Py (x) and Py (y) are positive. Then,

Fyy(z,y)= Z P(xi)P(y;) = Z Z P(xi)P(y;)

(zi,y5)€RX, Y 2,ERx y;€ERy

z; <x,y; <y <z y;<y
= > P(z:) Y. Ply)=Fx(x)Fy(y)

T, €ERx y;ERy

T <@ y; <y

and hence the random variables X,Y are independent.

To show the only if part, assume X, Y are independent, so Fx y(z,y) = Fx(z)Fy (y). Again, this implies
Rx, = Rx X Ry, because Fx y(z,y) must change values everywhere Fx(z) changes value and Fy(y)
changes value. Let (z,y) be a point in Rx y. Since Rx, Ry are discrete sets, there is an € > 0 such that
Fx(z)— Fx(x—¢€) = Px(z) and Fy(y) — F(y —¢) = Py (y). We want to compute P[{X € (z —e,z]} N{Y €
(y —€,2]} = Px,y(z,y). In Example 4.1 we showed that

P{X e(z—cax]}n{Y e (y—¢z]}]=Fxy(z,y) — Fxy(@—cy)—Fxy(@,y—¢e +Fxy(z—ey—e)
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Since X,Y are independent, this means

Pxy(z,y) = Fx(2)Fy(y) — Fx(z — €)Fy (y) — Fx(2)Fy(y —€) + Fx(z — ) Fy (y — ¢)
= (Fx(2) — Fx(z — €))Fy (y) — (Fx(z) — Fx(z —€))Fy(y —¢)
= Px(2)Fy(y) — P(z)Fy(y — €) = Px(z)(Fy(y) — Fy(y —€))
= Px(z) Py (y)

For pairs of continuous random variables, we have a similar equivalent condition in terms of probability
density functions:

Lemma 4.2
A pair of jointly continuous random variables X, Y are independent if and only if fx v (z,y) = fx(x)fy (v).

proof: The if direction is easy to prove, because
Feso = [ [ pevanaa = [ pesanaya = [ @iy
70;3 —oo ) —o00 J —00 —o0 J —o0
([ e[ Fea) = Fx@Fr)
— 00 — 00
and hence, X and Y are independent.

To show the only if direction, let X, Y be independent. Then, Fx y(z,y) = Fx(x)Fy,(y). Then,

o 0 o 9
Ixy(z,y) = %@FX,Y(%Q) = %@Fx(x)Fy(y)

~ (5 P (@) (- Fir) = S () (1),

establishing the result.

Independence is one of the most important properties used in modeling experiments with multiple random
variables. By assuming independence, we can describe the two-dimensional joint PDF as a product of two
one-dimensional PDFs.

Independence between a pair of random variables has implications on the conditional probability. For
a pair of discrete random variables X,Y, we know that the conditional probability mass function of X
given observations that ¥ = y satisfies the following relationship: Px y(z,y) = Pxy(z|y)Py(y).. If X,V
are independent, then Px y (z,y) = Px(z)Py(y). This means that, for independent X,Y, the conditional
probability mass function is equal to the marginal, unconditional probability mass function:

Pxy(z]y) = Px(z) for all y € Ry .

A similar result applies to jointly continuous random variables X, Y that are independent. For jointly con-
tinuous X, Y, we know fx vy (z,y) = fx|v(z|y) fy(y). If X, Y are independent, then fx y(z,y) = fx(z)fy(y).
Thus, for jointly continuous, independent X,Y, we have

Ixjy(zly) = fx(z) for all y € Ry .

Independence between pairs of random variables is often a property that is assumed. To prove that a
pair of random variables are independent, one would have to verify the factorization property Px y (z,y) =
Px(z)Py(y) or fxy(z,y) = fx(z)fy(y) for all values (x,y). In some cases, we can recognize that X,Y are
dependent simply by looking at the range sets Rx, Ry, Rx,y. Specifically, if X,Y are independent random
variables, then Rx y = Rx X Ry. For discrete random variables, this is because Px y (z,y) > 0 only if both
Px(x), Py(y) > 0. Thus, to recognize two discrete random variables X,Y are dependent, we simply need
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to find a pair (z,y) where Px y(x,y) = 0, but Px(z) > 0, Py(y) > 0. We can recognize this by finding a
zero entry in the table representation of the joint PMF, where neither the entire row nor the entire column
containing that entry is zero.

For jointly continuous, independent random variables X, Y, Rx y = Rx xRy follows because fx y(z,y) >
0 only if both fx(z), fy(y) > 0. Thus, to recognize that two random variables are dependent, we simply
need to find a pair (z,y) € R? where fxy(z,y) = 0, but fx(z) > 0, fy (y) > 0. We can recognize this by
finding a point (z/,y’) € ®? where fxy(z',y’) = 0, but either the line x = 2’ or the line y = v’ intersect
Rx y. Thus, for jointly continuous, independent random variables, the range Rx y must be of rectangular
type with boundaries parallel to the edges.

Note that showing Rxy = Rx x Ry is insufficient to show independence of X,Y. It is a necessary
condition, so if it is not satisfied, then the random variables are not independent.

Example 4.16
Consider two discrete random variables X, Y with the joint PMF function used in examples 4.3 and 4.4, which is shown
in the table below. We can quickly see that X, Y are not independent, as Px y(4,4) = 0, but the row corresponding to

HY\XHl\f\?W‘lH
1 012010
) OEAL

9 240 210 220
W EAEAE AR
4 20 | 50 |30 | O

Y = 4 and the column corresponding to X = 4 are not identically zero. We could have picked several other zero entries
to verify that X, Y are not independent.

Figure 4.13: Figure for example 4.17.

Example 4.17
Assume X, Y are jointly continuous random variables with range Rx y as one of the three ranges depicted in Figure 4.13.
For which one of the three ranges can X,Y be independent random variables?

Consider the range on the left. We can select a point (z,y) ¢ Rx,y, such as (0.6,0.6), where fxy(z,y) = 0.
However, fx(0.6) > 0, and fy(0.6) > 0, because the line z = 0.6 intersects the range Rx,y with a non-zero length,
and the line y = 0.6 intersects the range Rx,y also with a non-zero length. Therefore, X and Y cannot be independent
random variables.

Consider next the range in the center. Again, we can select a point (z,y) = (0.3,0.3) ¢ Rx,y so that the vertical
and horizontal lines through this point intersect Rx,y with non-zero length. This implies that fx y(0.3,0.3) = 0 while
fx(0.3) >0, fy(0.3) > 0, so X,Y cannot be independent.

On the other hand, if the range Rxy is as depicted in the figure on the right, then we cannot find a point (z’,y') ¢ Rx,v
where both the vertical line z = z’ and the horizontal line y = ¢’ have positive length intersection with Rx y. In this
case, it is possible that X, Y are independent. To show independence, we need to verify that, for all (z,y) € Rx,y, we

have fx,v(z,y) = fx(z)fr(v).
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4.7 Expected Value of a Function of Two Random Variables

In the previous section, we have developed the concept of joint probability mass functions, and joint probabil-
ity density functions, to characterize the properties of pairs of random variables X,Y on a probability space
(Q,&,P). Consider now a function g : R2 — R. This function defines a new random variable W = g(X,Y).
We can compute the expected value, or mean of W, using the joint PMF or the joint PDF of X,Y, as
follows:

Discrete: Z Z z,y)Px )y (z,y)

r€Rx yERy

Continuous: E[W] = / / 9(x,y) fx,y (2, y) dvdy

In either case, note that the expectation operation is a linear operation: For any functions ¢; (z,y), g2(, y),
and constants aq, as,

E[a1g1(X,Y) + a202(X,Y)] = a1E[g1(X,Y)] + +asE[gn (X, Y)],

This is because the expectation operation is based on summation and integration, both of which are linear
operations. That is, for discrete random variables X,Y,

E[a191(X,Y) + azg2(X,Y)]

Yo 3 (i@ y) + azga(a,y)) Pry (. y)

r€ERx yERy
=Y > mgi@y)Pxy(@y)+ Y, D asga(w,y)Pxy(x,y)
r€ERx yERYy rz€ERx yERy
=a1 Y, > i@ y)Pxy(@,y)+a2 Y > gala,y)Pxy(x,y)
z€ERx YyERy z€Rx yERy

= CLlE [91 (X, Y)] + CLQE [gg (X7 Y)}
A similar argument shows the result for jointly continuous random variables using integrals instead of sums.

A useful special case is when the function g(z,y) is an affine function, so that g(x,y) = ax + by + ¢ for
some constants a, b, c. In this case,

ElaX +0Y +¢] = E[aX] + E[bY] + E[c] = aE[X] + DE[Y] + ¢

Note that this is true regardless of whether X,Y are independent or not. It is strictly a consequence of the
linearity of the expectation operator E[-].

However, if X,Y were independent, and g(z,y) = fi(z)f2(y) so that it can be written as a separable
product of two functions, we have an interesting decomposition. Assume that X,Y were jointly continuous
random variables with joint PDF fx y (z,y). Then,

Bx V)= [ [ swntcrendd = [ [ i@ ) dedy

/ / fi@) fa(y) fx(x) fy (y)dedy because X,Y are independent,

(i)

= E[fi(X)]E[f2(X)]



4.7. EXPECTED VALUE OF A FUNCTION OF TWO RANDOM VARIABLES 113

The smoothing property of conditional expectation continues to apply to functions g(X,Y’). We show
this for jointly continuous X,Y below, as

BV = [ [ smnpertadar= [ [ gty ) dedy
= [ st dasv ) dy

—00 — 00

-/ " El(X, )Y = yl) v (4) dy = E[E[g(X, Y)|Y]

—0o0

The above results allow us to compute the expected value of a random variable W that is derived from
X,Y by a function W = g(X,Y).

Example 4.18

Assume that the number of people in line at the bank when you arrive is N, where N is random, having a Poisson
distribution with parameter a. The time T that it takes to serve each person ahead of you can be described by an
exponential distribution with parameter ), and is independent of N. The time to serve each person is thee same. How
long do you expect to wait before someone starts to serve you?

Let W be the time you will wait. W is a function of N, T, as W = NT.

Since N, T are independent, E[W| = E[T|E[N] = %

4.7.1 Transformation of pairs of random variables

In some cases we want to compute the full probability mass function or probability density function of W,
depending on whether W is discrete or continuous. If W is discrete with range Ry, then for each w; € Ry,
we can define the inverse image of w as the set g~ (w) = A, = {(z,y) € Rx,y : g(z,y) = w}. As long as
the function g is well-behaved, we compute the probability mass function of W as:

Py (w) =PH{w: (X(w),Y(w) € Au}l = > Fxy(z,y).
(z,y)€Aw

Thus, we can readily derive the probability mass function of W from the joint probability mass function of
X,Y, as long as we can readily compute the inverse image g~ (w).

If X,Y are jointly continuous, and the map W = ¢g(X,Y) results in a continuous random variable W, the
above approach is limited because the probability that W takes on a particular value is zero. In this case,we
can instead compute the cumulative distribution function Fyy (w). Let B, = {(x,y) € Rxy : 9(z,y) < w}
be the region in Rx y that maps into values g(x,y) < w. In this case, the CDF Fy(w) can be computed as

Fy(w) = / Ix,y(z,y) dx dy.
(a[:,y)eBw

From the CDF, we can get the PDF of W by differentiation, as fi (w) = 4= Fy (w).

The above equations were derived for general functions g(x,y), and require solving for the inverse maps
of a region of values B,, when W is continuous W or A, for discrete W. This can be challenging for
complicated functions g(x,y). However, there are cases of functions g(x,y) where these inverse maps are
straightforward to compute. For instance, let g(x,y) = ax + by + ¢ be a linear function, where a,b # 0.
Then, the line ax + by + ¢ = w divides the x-y plane into two half planes, one of which is B,,. In particular,
let’s consider W = X +Y.
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In this case, for discrete X,Y, the set A, = {(z,y) € R? 12 +y = w} =
{(z,w — ) : x € R}. Therefore, the PMF of W can be computed as

Py (w) = Z Pxy(z,w—1z) = Z Px y(z,w — x),
zeR TzE€RX

where the second equality follows because Px y (z,w—z) = 0 unless z € Rx.

This operation is illustrated in Figure 4.14. To get the probability mass

Py (w), we sum up all the probability masses Px y (z,y) on the line z+y = Figure 4.14: Projection to

w. compute PMF of X + Y.

For jointly continuous X,Y, the set the set B, = {(z,y) € R : 2 +y <
w}t ={(z,y) : x € R,y € (—oo,w — x]}. Therefore, we compute the CDF
Fy (w) as

oo

Fy(w) =P{X+Y <w} = / / Ixy(z,y)dyde.
T=—00 y=—00 W\ X

From this CDF, we compute the PDF of W by differentiating:

Figure 4.15: Projection to
compute PDF of X + Y.

fw(w)Z%/ /fX,Y(l“ay)dydl”: /(% / fxy (@) dy) do = / fxy(z,w—z)da.
T=—00 y=—00 r=—00 y=—00 r=—00

This operation is shown in Figure 4.15. In essence, one integrates the joint PDF along the line x 4+ y = w.
This is similar to computing a marginal distribution from a joint distribution, except we integrate along an
inclined line instead of a vertical or horizontal line.

For the special case that X,Y are independent,

oo

fww = [~ fev@w-odo= [T fx@to o,

=—00 r=—00

which shows that the probability density of the sum of independent random variables X and Y is the
convolution of their probability densities.

Example 4.19
Assume we have a pair of continuous random variables X, Y with joint PDF
6(l—z—-y) 220,y=>0,z+y<1,
fxy(z,y) = ( ) .
0 otherwise.

Let Z = max(X,Y’). Find the probability density function fz(z).

The joint PDF of XY is illustrated in Figure 4.16, where we have drawn also
contours for equal values of z, illustrated by the red squares on the z-y plane.
We first compute the cumulative distribution of Z for values z < 0.5. In this
range, the region of integration B, lies entirely in Rx y.

Figure 4.16: Figure for example
Using the limits as indicated in Figure 4.16, we obtain for 0 < z < 0.5, 4.19.

PUZ < 2}] = Fa(z) = P{X < 2} N {Y < 2}] = / ’ / " fxy (o, y) dr dy

:/ / 6(1—x—y)dxdy=/ 6(1 —y)z —32° dy = 62° — 62°, 2 € [0,0.5]
o Jo 0
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Note that Fz(z) = 0 for z < 0. Furthermore, Fz(z) = 1 for z > 1, as the region of integration expands to include all
of the range Rx.y.

For z € [0.5,1], examine the diagram in Figure 4.16. The region of integration B,, now expands beyond Rx y. It is
easier to compute this as follows:

P{Z <2} = Fz(2) =1 - P{X > z}] - P[{Y > z}]

1 1—y
—17// 1fxfy)dydxf// 6(1l—z—vy) dxdy
z 0

:1—/ 3(1 — x)? dm—/ 3(1—y)* dy
=1-2(1-2)7° 2€0.5,1]

At z = 0.5, Fz(z) = 2, which agrees with the value computed previously, as Fz(z) is a continuous function.

The density fz(z) is now readily obtained by differentiating, to get

J 0 z ¢ [0,1],
fz(z) = @Fz(z) =412z - 182> 2 € (0,0.5),
6(1—2)2 .z€(0.51).

Example 4.20
Let X,Y be independent, uniform(0, 1) random variables, and let Z = X + Y. Find the PDF of Z.

Note first that the range of Z will be Rz = [0,2], the set of values that can have probability. Using the formula
provided above for the sum of random variables,

fz(z) = /00 fxy(x,z—2x)de = /00 fx(z)fy(z —x)dx by independence,

=—00 r=—00

We use the fact that Rx = [0,1], Ry = [0, 1] to determine the limits of integration, as follows:

0 z ¢[0,2],
fz(z) = fol fy(z—2)de= [ de==z z €[0,1],
folfy(Z—r) d:c:thl dr=2-2 z€]1,2]

Example 4.21
Let X,Y be independent, exponential(A) random variables, and let Z = X + Y. Find the PDF of Z.

Note first that the range of Z will be Rz = [0,00), the set of values that can have probability. Using the formula
provided above for the sum of random variables,

fz(z) = /oo fxy(z,z—x) de = /OO fx(x)fy(z —x)dx by independence,

=—0C r=—00

0 z <0, 0 z <0,
N Ae MAe™E) gr >0 0 | A2ze—Azdx 2>0

The sum of two independent exponential random variables with the same rate parameter defines a random variable that has
an Erlang(2, \) distribution. If we were to sum n independent exponential random variables with the same rate parameter
A, we obtain an Erlang(n, A) random variable.

Example 4.22
Let X,Y be independent standard Gaussian random variables, so X,Y ~ N(0,1), and let Z = aX + bY + ¢ for some
constants a # 0,b > 0, c. Find the PDF of Z.

We start by finding the CDF of Z, exploiting the independence of X, Y and the positivity of b, as

z—azx—c

(2) =P{aX +bY +c< 2} = /7 /7 (@) fv (y) dy dz.
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Differentiating, we get

z—ax—c

fz(z) = /::_OO (;; /y:_;
1
b

- [ @A

Ix () fy (v) dy) dx

Substitute the Gaussian PDF formulas for X,Y to get:

f(z)*/oo O
2B =) b vas Vo

Let’s manipulate the exponent in the integral to isolate the dependence on x as follows:

33727(2—(1:10—0)2 _7£27(ax)2 an(z—c)i(z—c)2
2 2b? 2 2 2b2 2b?
a® . 2?  a(z—c) (z —¢)?
R A T R T

_ (a®+b%) 2?2 a(z—c) (z —¢)?
= (*7+ a2+b2x72(a2+b2))

(a® 4+ b?) <_ (z — Zgz_:b%))g n a*(z —c)? (z —¢)? )

b2 2 2(a2 + b2)2  2(a + b?)

_a(z—c)\2 2 2 2 2

" _ _

_ _( 2 15?) + 2 (z=c)” (2-9) where K? = o
K2 2(a2 + b2)b2 22 a? + b?
a(z—c)\2

- _ (@ — ) G )’ where K? = L
2K 2(a? +?) af b7

The reason for this transformation is to express the integral in terms of an integral for a Gaussian PDF. With this
transformation, we have

1 > 1 (o 2553 1 __G=a? 1 _ (=2 oo 1 - 2553
fz(2) = 7/ e” T 2kz e 2T dp = — = ¢ 3(a%te?) / e” T 2k2 dx
b J_o Vor V2 27 (a? + b2) —oo V2TK?2
(z=c)?
— ;6_ 2(aZ+b2)

2m(a? + b2)

because the last integral is the integral of a Gaussian PDF with variance K2 and a given mean, which equals 1 because
of the normalization property of PDFs. Furthermore, note that fz(z) is also a Gaussian pdf, with mean ¢ and variance
a® + b% (thus Z ~ N(c,a® + b?).) We have just shown that an affine combination of two independent Gaussians will also
be a Gaussian random variable. With a similar argument, we can show that any affine combination of Gaussian random
variables will be a Gaussian random variable.

Example 4.23
Let X,Y be independent continuous random variables, and let Z = max(X,Y’). Find the PDF of Z.

In contrast with Example 4.19, we don't specify the pdf of the random variables, but we specify that they are indepen-
dent. We first derive the CDF of Z:

P{Z <z} =PH{X <z} n{Y <z} =P{X < z}JP{Y < z}] by independence.
Hence,
Fz(2) = Fx(2)Fy ()
and the PDF of Z can be obtained as

F2(2) = L F2() = Fx(2)fv (2) + Fy (2)Fx (2).

Given the CDF and PDF of the random variables X, Y, we can get the CDF and PDF of Z.

To illustrate this, consider the following pair of jointly continuous random variables X, Y, with joint PDF given by
(1-35)01-%) 0<zy<2
0 otherwise.

Ixy(z,y) = {



4.7. EXPECTED VALUE OF A FUNCTION OF TWO RANDOM VARIABLES 117

Let Z = max(X,Y). Then,

(1-3) 0<z<2, (1-4%) 0<y<2
x) = =
Jx(@) 0 otherwise. Fr(®) 0 otherwise.
0 z <0, 0 y <0,
Fx(z)={z-2 0<z<2, R (Y)={y-% 0<y<2
1 x> 2 1 y > 2
Using the above formula,
0 z <0,
fz(z) =Q2(z-2)(1-%) 0<z2<2,
0 z > 2.

Does the same idea work for the minimum of two random variables? Let W = min(X,Y"). Then,
P{W > w}] =P{X > w}nN{Y > w}] =P{X > w}|P{Y > w}] by independence.
Hence, 1 — Fi (w) = (1 — Fx(w))(1 — Fy (w)) which leads to
Fw(w) =1—= (1= Fx(w))(1 = Fy (w)) = Fx(w) + Fy (w) = Fx (w)Fy (w).
Differentiating with respect to w yields

fw (w) = %Fw(w) = (1= Fy(w))fx(w) + (1 = Fx (w)) fy (w)

We conclude this chapter with two examples from a mathematics competition. Questions like these often
show up as interview questions for companies like Google. We state first the word problems, and then
formulate the problem using pairs of random variables. These examples are difficult, but show how the
techniques of this Chapter are used to formulate and solve problems.

Example 4.24

You have a stick of length 1. You pick a point along the stick, uniformly distributed, to break it into two pieces. You take
the longer of the two pieces, you pick a point uniformly along that piece, and break the long piece into two pieces. You
now have three pieces. What is the expected length of the shortest of the three pieces remaining?

Let X denote the length of the shorter piece remaining after the first break. Since the first break was uniform distributed,
it is straightforward to compute the PDF of X as

2 0<z2<0.5
x) = -
fx(@) {.0 otherwise.

The length of the longer piece is 1 — X. Let Y denote the length of the shortest of the two pieces that remain after
breaking the longer piece. Then, Y has conditional PDF

2 -z
Tz Y € [0’ 2 ]
) =
Jyix (ylz) {0 otherwise.

and thus is distributed uniformly in [0, %] using a similar argument as before. The joint PDF of X,Y is defined using
using the multiplication rule as:

11—z

4 1—x
fX’Y(x’y)_fY|X(y|1')fx(m)—{ 0<2<05,0<y< 55,

0 otherwise.

We already know that Y is the shortest of the two pieces from the second break, and X is the length of the shortest piece
after the first break. Hence, the length of the shortest of the three pieces is min(X,Y). We have now transformed the
original problem into computing the expected value of a function of two random variables, where we know the joint PDF:

Emin(X,Y)] = /é (/0% min(x,y)% dy) dx

0



118 CHAPTER 4. PAIRS OF RANDOM VARIABLES

The rest is tedious calculus that is easy to do with a computer. We have completed the probability part of the problem, and
written the correct integral. Nevertheless, let's show the calculus computation. The trick is to figure out the regions where
we can write explicitly the minimum of z,y. First, assume = > 1_71 which is equivalent to = > % Then, min(z,y) =y
for y € [0,25%]. Next, if < %, then min(z,y) = z for y € [z, 5%], and min(z,y) = y for y € [0,2]. We use this to

rewrite the integral as:

Emin(x,)) = [ : (f N mina,g) ;- dy) do+ [ :

0 0

1—=x
R 4
(/0 mm(x,y)m dy) dx

LI 4 3, 5"
/:1))(/0 mln(x,y)mdy) dw—/é (/0 ylixdy)dm

o [Fa0-w)?)  [r(l-ax) 1
_4 8(1— ) dx_/é 5 =g

ol

I

6
16

1—=x

1 11—z 1
5, (2 4 I A 2 4
/0 (/0 mln(m,y)m dy) dm—/o (/0 Uy dy—l—/I xl_mdy> dx

_/ﬁ( 222 Jr23:(1—390)) o

1—=x 1—=x
3 90 — 422
:/ ST g~ 0.078.
0 l1-=z

1 1
E[min(X,Y)] = 0.078 + 9516 ~ 0.1266
Example 4.25
You have a stick of length 1. You pick two points along the stick, uniformly distributed, selected independently, You break
the stick at the two points, resulting in three sticks. What is the expected length of the shortest stick?

The difference in this example from the previous example is that the points are selected independently, not sequentially.
Let’s propose a formulation using pairs of random variables. Let X be one of the points, and Y be the other. We know
the joint PDF of XY, given by
1 0<z<1,0<y<l,

0 otherwise.

Ixy(z,y) = {

In terms of X,Y, what is the length of the shortest stick? Let S(X,Y) be this length. If X > Y, then S(X,Y) =
min(Y, X — Y,1 — X). Let B be the event that X > Y. By symmetry, P[B] = 3. Then, the conditional joint PDF of
X,Y is given by

fx, v (z,y)

Ixy@y) (o 0) € B, 2 0<y<z<l,

0 otherwise 0 otherwise.

Our answer is the conditional expected value of S(X,Y) given the event B, because either X or Y has to be the smallest,
so without loss of generality, we call X the smallest. Note that this introduces a factor of 2 to the conditional density,
corresponding to mapping the original probability density from the unit square to the triangle 0 < y < x < 1. Hence, our
answer is

E[S(X,Y)|X > Y] :/01 (/Dw2min(y,xfy,1fx)dy) dx

The rest is calculus...it does require breaking down the integral into regions where we can recognize which one of the terms
is the minimum so we can do the integrals. A diagram will be most useful. We need to identify the regions in the triangle
0 <y <z <1 where min(y,z —y,1 —z) =y, min(y,z —y,1 —2) =z —y, and min(y,z —y,1 —x) = 1 — z and
compute the appropriate expected values in those regions.

The diagram is shown on the right. The three regions have a common point (2/3,1/3)
where all three lengths are equal. Region 1 in the diagram is the region where the minimum
isy,soy <x—y,y<1l—x Hence, this region is y < /2,y < 1 — x. Region 2 is where
the minimumisz—y, soz—y <y,z—y < l—xz soy > x/2,y > 2z — 1. Region 3 is where
the minimumis 1 —z,s01 —x <y,1 —x <z —y and therefore y > 1 —z,y > 2z — 1.
The answer we want is

]E[S(X,Y)|X>Y]:// 2ydxdy+// 2(x—y)dmdy—|—// 21— z)dedy  Tigure 4.17:  Example
Ry Ro R3 4.25.
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Computing each integral yields:
1

//}212ydasdy—/0é (/2:y2ydw)dy—/0é2y(1—3y)dy— —237_27
//]%22(:17y)cloccly—/og (ﬁx2(xfy)dy)d:r+/;(/2:_12(x7y)dy)dx

2

Nelio

2 2 1
:/d(a;Q—xQ-l—%)dx—i—/Z(2x(1—m)—x2+(2x—1)2)da:
0 3

2 9 1
:/3£dm+/(2w—2x2—$2+4x2—4x+1)dm
0 3

4
1 8 ro, 2 1 1
—12274’/3(% 72$+1)d1'—8f1 g—?’?

//RSZ(lm)dmdy:/gl(/:z_l(lx)dy)dx:/;(lx)2dx:217

Assembling the answer yields that the expected value of the shortest piece is 1. Note that this is a little shorter than the

9

answer to the previous example. The reason is that, in the previous problem, after we selected the first point, we broke
the longer of the two pieces. Here, we select the second break randomly, so we can break the shorter of the two pieces,

thereby resulting in shorter pieces. It is useful to check that your answers have common sense explanations.
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Chapter 5

Second-Order Analysis of Random Vectors

5.1 Introduction

In Chapter 4, we developed a characterization of the properties of pairs of random variables X, Y defined
on the same probability space (Q,&,P) by defining either a joint probability mass function (PMF) or a
joint probability density function (PDF), which can be used to compute probabilities of joint events and
expectations of functions of the random variables. Using the joint PMF or joint PDF, we computed statistics
such as the expected value of a function g(X,Y).

In this chapter, we focus on second order statistics of a pair of random variables X,Y. These statistics
generalize the concepts of variance and standard deviation to pairs of random variables, and are easily
computed from sample data. We describe how these statistics change for linear or affine transformations of
the pair X,Y. We study the special case of jointly Gaussian random variables X,Y | where the joint PDF
is entirely described in terms of its second order statistics, and show special properties of jointly Gaussian
random variables that make them suitable models for problems in estimation and detection. We conclude
the chapter with a generalization of second order statistics to random vectors involving 2 or more random
variables.

5.2 Covariance and Correlation

Consider a pair of random variables X,Y defined on a probability space (2, &,P). If discrete, these random
variables are characterized by a joint PMF Py y(z,y) and marginal PMFs Py (x), Py (y) derived from the
joint PMF by
Px(z) = Z Pxy(z,y); Pr(y) = Z Pxy(z,y).
YyERy x€ERx
If X,Y are jointly continuous, the random variables are characterized by the joint PDF fx y(z,y), and
marginal PDFs fx(x), fy (y) computed as:

fx(z) = /_OO fxy(x,y) dy;  fy(y) = /_OO fxy(z,y) dx.

Using the marginal PMFs or PDFs, we can compute the means of X and Y, as E[X],E[Y]. We also
compute the variance of each of the random variables X, Y as

0% =E[(X - E[X])"] =E[X?] - (E[X])’,

2 2 2 2
7% = E[(y ~B[Y])’] = B[y?] - (B[Y])"
These variances measure how much each of the random variables deviates from their average values. However,
as statistics, they provide no information as to how the deviations of the random variables depend on each
other.

To capture that information, we define several joint statistics for the random variables X, Y. First, we
define the cross-correlation between X and Y as E[XY]. An important property of the cross-correlation
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(E[XY})Q < E[X2E[Y?].

This follows from well-known Cauchy-Schwarz inequality, which states that, for functions f(z),g(x) with
finite square integrals,

|/O; J@ate) dx| = (/C: f(x)2 dx)l/Q(/zg(x)Q dx)l/z.

Similarly, for square summable sequences x,,, ¥y,
> = 1/2 1/2
| eyl < (3o 22)2 (D)
n=1 n=1 n=1

For continuous random variables, this implies

o

‘]E[XY]’ = ‘/_Oo /_i ryfxv(T,y) dmd@/‘ = ‘/_O:o /_Z (wa,Y($7y)%)(ny,Y(xvfw%)dxdy‘

s(/mﬁkﬂ@wmwﬂﬂ/mﬁhymwmmwmz@wmmmwm

—00

1/2

The cross-correlation depends on the expected value of the individual random variables. To eliminate the
dependence on the mean of the random variables, we define the covariance of random variables X and Y
as

Cov[X,Y] = E[(X — E[X])(Y — E[Y])].

Intuitively, this captures how X and Y vary together with respect to their expected values. Unlike variances,

the covariance between two random variables can be negative. A negative covariance indicates that, when X
is greater than its mean E[X], Y is likely to be less than its mean E[Y]. The covariance will be an important
part of how we can estimate the value of one variable (e.g. Y) based on measurements of the other variable
(X).

Since X,Y are real-valued random variables, Cov[X,Y] = Cov[Y, X]. As is the case for variances, there
is a useful formula for computing covariances from cross-correlations:

Cov[X,Y] =E[(X — E[X])(Y —E[Y])] = E[XY — E[X]Y — XE[Y] + E[X]E[Y]]
=E[XY] - E[E[X]Y] - E[XE[Y]] + E[E[X]E[Y]]
=E[XY]-E[X|E[Y] - EX|E[Y] + E[X|E[Y] = E[XY] — E[X]E[Y]

Using the Cauchy-Schwarz inequality as before, we get the following:
|Cov[X,Y]| < +/Var[X]Var[Y].
Using this inequality, we define the correlation coeflicient px y between two random variables X,Y as

Cov[X,Y]

XY = —Fe—m—m——————s
P \/Var[X]Var[Y]
The correlation coefficient has magnitude less than or equal to 1, so its range is in [—1, 1].

Another way of interpreting the correlation coefficient is that it is the covariance of the normalized
random variables F = —=% Y

NS and G = ok Normalizing each of the random variables by dividing by

their standard deviation results in random variables F' and G with variance 1. This normalization is used
extensively in data science and statistics to reduce the effects of measurement units for feature values.
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Example 5.1
Let X,Y be a pair of random variables, and define Z = X 4+ Y. Then,

E[Z] = E[X] + E[Y] (linearity of expectation)
E[Z°] =E[(X +Y)*] = E[X® + 2XY + Y?] = E[X?] + 2E[XY] + E[Y?]
=E[X]? + Var[X] + Q(E[X]]E[Y] + Cov[X, Y]) +E[Y]? 4 Var[Y] (definitions of variance, covariance)
- (IE[X]2 +2E[X]E[Y] + E[Y}Z) + Var[X] + 2Cov[X, Y] + Var[Y]

= E[Z)? + Var[X] + 2Cov[X, Y] + Var[Y]
Var[Z] = E[Z%] — E[Z]? = Var[X] 4 2Cov[X, Y] 4 Var[Y]

This provides a quick way of calculating the covariance of a sum of random variables. The result does not depend on
the mean of the random variables.

Example 5.2
Can the correlation coefficient have magnitude 17 Let X be a random variable, and let Y = —3X + 1. Then,
Var[Y] = (—3)*Var[X] = 9Var[X]
Cov[X,Y] = E[XY] - E[X|E[Y] = E[-3X” + X] — E[X]E[-3X + 1] = —3(E[X?] — E[X]?) = —3Var[X]
Cov[X,Y]  —3VarX
V/Var[X]Var[Y] B \/9Var[X]? B

When the magnitude of the correlation coefficient is either 1 or -1, it usually indicates a linear dependence between the
two variables X, Y. Notice that, in this case, the correlation coefficient has a negative sign, suggesting a negative linear

dependence.

pPX)Y =

Note also that the correlation coefficient is a scale-independent measure of how the random variables depend on each
other. Thus, the scale factor of -3 between X and Y only affects the correlation coefficient by its sign, not its magnitude.

Example 5.3
Consider a pair of jointly continuous random variables X, Y with fx v (z,y) given as
2y 0<2<1,0<y<2,

0 otherwise.

Ixy(z,y) = {

The marginal distributions are given as

fx(x) = /_oo fxv(z,y)dy = {({o zydy =2z z€[0,1]

otherwise.

fr(y) = /°° fxy(z,y)de = {({0 zyde =% yel0,2]

Note that X, Y are independent, as the range Rx,y = Rx X Ry and thus fx y(z,y) = fx(x)fy (y).

otherwise.

Using these densities, we compute the first and second order statistics as follows:

E[X] :/OO xfx(x)d:c:/12x2dx:§

— 00 0
oo 2,2
E[Y] =/_ yfy (y) d:lﬂ=/O %dy:

Ol Wik

Varlx] = B¢ - B[XT? = [ 200 - § =
0

EXY] =E[X]E[Y] = (because of independence.)

©| o

Cov[X,Y] =0, px,y=0

When two random variables are independent, their covariance is 0. The converse is not true, as we will see later.
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Two random variables X and Y are uncorrelated if Cov[X,Y] =0 (or px,y =0).

e If X and Y are uncorrelated, we have that Var[X + Y] = Var[X] + Var[Y] and E[XY] = E[X|E[Y].

e Independence of X and Y implies that they are uncorrelated. However, uncorrelated X and Y need
not be independent.

To clarify, if X,Y are independent, then, for bounded functions f, g, we have

B0 = [ [ @) o) drdy
- /_OO /_OO f(2)g(y) fx () fy (y) dv dy (independence of PDF)

— (/Z f(@) fx () dx) (/O:O 9(y) fr () dy) = E[f(X)|E[g(Y)]

The converse of this is also true: if E[f(X)g(Y)] = E[f(X)]E[g(Y)] for any bounded functions f, g, then
X and Y are independent. However, X, Y are uncorrelated if and only if E[XY] = E[X]E[Y]. Thus, the
condition for uncorrelated random variables involves only linear functions of X,Y, whereas the condition for
independence must hold for the broader class of bounded nonlinear functions of X, Y.

Furthermore, if X,Y are independent, then fx|y(zly) = fo:((;’)y) = fX(f?{;')(y) = fx(z). Hence,
E[X|Y = y] = E[X] for all y € Ry. Similarly, E[Y|X = z] = E[Y] for all + € Rx. Independence
is a strong property of the underlying densities of the random variables, while uncorrelatedness is only a
property of second order statistics.

One of the interesting properties of uncorrelated random variables X,Y is that, if Z = X + Y, then
Var[Z] = Var[X] + Var[Y]. This is because, as derived in Example 5.1,

Var[Z] = Var[X] + Var[Y] + 2Cov[X, Y] = Var[X] + Var[Y],

since Cov[X,Y] = 0 because X,Y are uncorrelated. This generalizes to arbitrary sums, so that the variance
of a sum of uncorrelated random variables is the sum of the variances of the individual random variables.

Two random variables X and Y are orthogonal if and only if E[XY] = 0. If X and Y are orthogonal,
E[(X+Y)?] = E[X?]+E[Y?]. Note that orthogonal and uncorrelated random variables are different concepts.
If two random variables are both orthogonal and uncorrelated, then the mean of at least one must be zero. For
zero mean random variables, orthogonality and uncorrelatedness are equivalent. For instance, the random
variables X,Y in Example 5.3 are independent, and thus uncorrelated. However, they are not orthogonal,
because neither X nor Y has zero mean.

Example 5.4

Consider a pair of discrete random variables X, Y with joint PMF given

by the table on the right. Are X,Y independent? Are X, Y uncorrelated? Y

What is the covariance of X,Y? Pxy (z,9) 0 [ 1 [ 2
With respect to independence, the answer is clearly not. Note that 0 0.0L 10001000

Px.y(0,1) = 0, but Px(0) = 0.01 and Py (1) = 0.09.
Are X, Y uncorrelated? We compute E[X] = 0.18 + 2-0.81 = 1.80, and
E[Y] =0.09+2-0.81 = 1.71. We then compute

T 1 0.09 | 0.09 | 0.00
2 0.00 | 0.00 | 0.81

E[XY]=0.09-1-1+0.81-2-2=3.33%# (1.71) - (1.89)
Hence, they are not uncorrelated.

The covariance Cov[X,Y] = 3.33 — (1.71) - (1.89) ~ 0.252.
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Example 5.5
Consider a pair of discrete random variables X, Y with joint PMF given Y
by the table on the right. What are the means and variances of X,Y? Pxy (z,) 0 [ 1 [ D) [ 3

1 ?
Cvre XY ':diﬁe“de”t: | PMFs by deing col ] o pet [0 006018 024012
e compute the margina s by doing column and row sums to ge T 504 7012 1016 T0.08

Px(0) =0.6, Px(1) = 0.4.

Py (0) = 0.1, Py (1) = 0.3, Py (2) = 0.4, Py (3) = 0.2.

With this, we compute E[X] = 0.6 -0+ 0.4 - 1 = 0.4; similarly, E[X?] = 0.6 - 0> + 0.4 - 12 = 0.4. Thus, Var[X] =
0.4 —(0.4)* = 0.24.

For Y,E[Y]=0-01+1-03+2-04+3-0.2=1.7. Similarly, E[Y?] =02-0.1+1%-0.3+2%-04+3%-0.2 = 4.1l.
Hence, Var[Y] = 4.10 — (1.7)% = 4.10 — 2.89 = 1.21.

With respect to independence, note that there are no zeros in the table, so Rx,y = Rx X Ry. We now have to check that
Px,y(z,y) = Px(z)Py (y) for all (z,y) € Rx,y. We quickly verify that this is indeed the case, so X,Y are independent.
Therefore, Cov[X,Y] = 0.

Example 5.6

Consider a pair of continuous random variables X, Y, uniformly distributed dis = 1

on the unit disk with radius 1, centered at (0,0). Thus, the joint PDF of radius =

X,Y is given by area =1
X

1 0<a?+4y2 <1,

Ixy(z,y) = {’T

0 otherwise.

The joint PDF of X, Y is illustrated in Figure 5.1. We saw this example in
the previous chapter, as Example 4.11. Are X,Y independent? Are X,Y Figure 5.1: Example 5.6.
uncorrelated? What are the means, variances and covariances of X,Y?

With respect to independence, consider the point (x,y) = (0.9,0.9). This point is outside the unit circle, so fx,v(0.9,0.9) =
0. However, it is clear that a vertical line through that point intersects the unit circle, and so does a horizontal line. This
means that fx(0.9) > 0, fy(0.9) > 0, and therefore, fxy(0.9,0.9) = 0 # fx(0.9)fy(0.9). Hence, X,Y are not
independent.

By symmetry, we note that E[X] = E[Y] = 0. We can also verify these using the results of Example 4.11, where we

showed that fx(z) = L:ﬁ rly) = 2y :y2. Both of these functions are even functions, so E[X] = E[Y] = 0. By
symmetry, we can also show that E[XY] = 0. We will show that directly by computation:

E[XY] =/:: [nyfx,y(x,y)dwdy=[ll (/\;;ydy)idx

The inner integral evaluates as

i

Thus, E[XY] =0, and Cov[X,Y] = E[XY] — E[X]E[Y] =0, so X and Y are uncorrelated. In this case, X, Y are also
orthogonal.

V1—22
/ ydy = il Lo,
—\/1—xz2 2 —\/1-z2

It is also clear that Var[X] = Var[Y] by symmetry. To compute Var[X], since X has zero mean, we get

= - = Var[Y],

b, 2vT — a2 1
r—dx 1=
™

Var[X] = E[X?] :/

-1

where the integral can be evaluated using a trigonometric substitution x = sin(0).
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5.3 Algebra of Covariances

Assume we have two random variables XY, for which we know their means E[X], E[Y], their variances
Var[X], Var[Y], and their covariance Cov[X,Y]. Define new random variables, linearly related to these, as

U=aX+bY +e¢ V=cX+dY +f

We want to compute the means and variances of U,V and their covariance. To answer this, we exploit
the properties of the linearity of the expectation operation, as

E[U] = E[aX + bY + €] = aE[X] + DE[Y] + eE[1] = aE[X] + DE[Y] + e.
E[V] = E[cX 4+ dY + f] = cE[X] + dE[Y] + f.
What about the variance of U? Since variance is a quadratic statistic, we have to expand a quadratic to
compute this. Suppose we compute this as Var[U] = E[U?] — (E[U])?. Then,
E[U?] = E[(aX +bY + ¢)?] = E[a’X? 4+ 2abXY + b?Y? + 2aeX + 2beY + 7]
= a” Var[X] + a*(E[X])? + 2ab Cov[X, Y] + 2ab E[X|E[Y] + b* Var[Y] + b*(E[Y])?
+ 2ae E[X] + 2be E[Y] + €2
- (a2 Var[X] + 2ab Cov[X, Y] + b? Var[Y]) + (a2(E[X])2 + 2ab E[X]E[Y] + b*(E[Y])?
+ 2ae E[X] + 2be E[Y] + e2)
- (a2 Var[X] + 2ab Cov[X, Y] + b Var[Y]) + (E[U])?
Var[U] = E[U?) — (E[U])? = a® Var[X] + 2ab Cov[X, Y] + b* Var[Y]

However, we know that variances do not depend on the mean of the variables. That is, Var[U] =
Var [U —E[U ]} . Indeed, we should have been able to compute the variance of U by assuming all the variables

had zero mean. This leads to a much simple computation, as
Var[U] = Var[U — aE[X] — bE[Y] — ¢] = E [(af( + bY)Q]
= E[o*(X)?] + 2E[abX Y] + E[b*(Y)?]
= a® Var[X] + 2ab Cov[X,Y] + b? Var[Y].

where X = X —E[X],Y =Y —E[Y], and thus Var[X] = E[(X)?], Var[Y] = E[(Y)?], and Cov[X,Y] = E[XY].
By considering only the zero-mean random variables, we are able to get to a simpler formula for variances
without having to consider the extra terms associated with the means. This avoids unnecessary algebraic
errors that arise when including all the terms involving the means of the random variables.

Similarly, we compute the variance of V as
Var[V] = Var [v - E[V}} - E[(cf( + d?)?} = ¢ Var[X] + 2cd Cov[X, Y] + d? Var[Y].
Furthermore, the covariance of U,V is given by
Cov[U, V] = Cov [U —E[UL,V - E[V]} - E[(aX bV (X +dY)
= ac Var[X] + (ad + bc) Cov][X,Y] + bd Var[Y].
Example 5.7

Consider X,Y as defined in Example 5.6. We know that E[X] = E[Y] = 0, Var[X] = Var[Y] = %, Cov[X,Y] = 0. Thus,
X,Y are uncorrelated and orthogonal.
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Let U =3X +2Y 4+ 1,V =2X — 3Y — 1. Compute the means, variances and covariance of U, V.
The means are easy: Using linearity of expectation, we get
E[U] =3E[X] +2E[Y]+1=1; E[V] =2E[X]-3E[Y]-1=-1.
For variances, using the approach that we deal only with zero-mean variables, we get

Var[U] = 9Var[X] + 12Cov[X, Y] + 4Var[Y] = 13Var[X] = 1?

Var[V] = 4Var[X] — 12Cov[X, Y] + 9Var[Y] = 13Var[X] = %
Cov[U, V] = 6Var[X] — 9Cov[X, Y] 4+ 4Cov[X, Y] — 6Var[Y] = 0.

Our transformations resulted in U,V that are also uncorrelated, but no longer orthogonal, because neither has zero-
mean. Why? If we write the transformation as a matrix:

V=B 5B

you will notice that the first and second rows of the transformation matrix for X,Y are perpendicular vectors. We will
explore this further when we discuss random vectors.

5.4 Jointly Gaussian Random Variables:

There is a class of jointly continuous random variables whose joint PDF is entirely specified by its second
order statistics. Recall that Gaussian random variables had PDF's specified entirely in terms of their means
and variances. In this section, we define the concept of pairs of jointly Gaussian random variables, where
the joint PDFs are specified entirely by first- and second-order statistics, and explore their properties.

We begin by constructing a pair of independent, standard Gaussian random variables. Let U, V be
standard Gaussian random variables defined on the same probability space. That is, U ~ N(0,1),V ~
N(0,1) both have zero mean and unit variance. To merge them into joint random variables, we assume that
U,V are independent, resulting in a pair of independent unit Gaussian random variables. In this case,
the joint PDF is

> 1 21 _u2a2
2

—u PR —
2

e e T =—e

1
fU,V(u7v) = \/ﬂ \/ﬂ o

The joint probability density of a pair of unit Gaussian random variables is shown in Figure 5.2. The
density is centered at (0,0), and has a circular symmetry, decaying to 0 as u? + v? approaches infinity.
Consider now a pair of random variables X, Y defined in terms of U,V as

Xide+MX; Y:UyU+ﬂY

where ox,0y > 0, and px, py are constants. Since X depends only on U and Y depends only on V', X and
Y are also independent random variables.

Note that E[X] = oxE[U] + px = px, Var[X] = 0% Var[U] = 0%. Similarly, E[Y] = py, Var[Y] = o%.
Since X is a linear transformation of the variable U, we can obtain the density of X using the methods of
Chapter 3 as
1, X —px 1 -Gon?

- Fo(2—EXy - —e 7k

lox]| X \2mo%
which also follows because a linear transformation of a Gaussian random variable results in another Gaussian
random variable. Similarly,

fx(x)

1 _(Y-ny)?

)= —==e >+

\/ 27‘(0'}2,
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Figure 5.2: Illustration of the density of a pair of independent unit Gaussian random variables.

and, because X,Y are independent, their joint PDF is given by

1 _<X—u2x>2 1 _<Y—u2y>2 1 _<X—u2x>2+<v—uy>2
Xy 1:, J— e 20% — ¢ 20y = — ¢ 20% 20y
fxx (@) V2mo% V/2mo} 2noxoy
Y o)
<
An illustration of the joint PDF of X,Y is shown in the figure on oy
the right. Note that the level sets of the probability density function Hy $

(curves where fx y(z,y) = K for some constant K) are now ellipses,
and the center of the PDF has shifted to the mean (ux,py). The
individual standard deviations are measures of the relative elongation
of the ellipses along each axis. The major axes of the ellipses are Ly
aligned with the x and y axes, because X and Y are still independent.

X

Figure 5.3: Gaussian PDF with
unequal variances.

Consider now Z = X 4+ Y to be the sum of two independent jointly Gaussian random variables. We
want to show that this is also a Gaussian random variable. If we know this, then the PDF of Z can be
computed trivially by knowing E[Z] = ux + py, and Var[Z] = 0% + 02, since the variances add when X,Y
are uncorrelated and hence independent. We show this for the case where the means px = py = 0, as we
can always add a constant to shift the means. We refer to Section 4.7.1 for determining the density of a sum
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of two jointly continuous random variables, as

2

ey St )t
=Ce *v e X v vdx
— 00

53] 00 2 (z—a2)?
fZ(z):/ fX,y(x,z—x)da::C/ e *x % dx
— 0 —00
2 e’} 4=z

2

- 222 > *ﬁ(%+%)+ﬁ*i 2 UQX 75+ 2 UQX 2
2 2 2
=Ce 2”Y/ e i S cylextoy)  © ey (xtoy) dr (add and subtract same term)
—0o0
_ 22 22 U?X’ 00 _ g2 1 412 zz _ 22 b
—Cce TR <a§+a2y>/ TGty T e D g
—00

—00
2
s [ -3 %4‘%)(9’3—%)
=Ce 2(”Y"'”X)/ e X oy oxTtoy dx
— 00

S LI
= Cle 2(5%,«#0%()

where the constant is chosen C; to satisfy the normalization property ffooo fz(2)dz = 1. The result shows
that Z is a Gaussian random variable with zero mean, and variance 0% + 0.

Using the above argument, we can show that a random variable X = aU +bV + ux will be Gaussian, with
mean E[X] = E[aU + bV + ux| = pux, and variance Var[X] = Var[aU + bV] = a?Var[U] + b*Var[V] = a® + b%.
Similarly, a random variable Y = ¢U + dV + py will be Gaussian, with mean E[Y] = py, and variance
Var[Y] = ¢? + d?.

We formally define jointly Gaussian random variables as follows: A pair of random variables X and Y
are jointly Gaussian random variables if they are linear functions of independent unit Gaussian random
variables U and V:

X =aU+bV + ux Y=cU+dV + py .

We now compute the covariance of X,Y as
Cov[X,Y] = E[(aU + bV)(cU + dV])] = acE[U?] + (ad + be)E[UV] + bdE[V?] = ac + bd,

since U, V are zero-mean, independent, unit variance random variables. The resulting correlation coefficient
is

ac+ bd
V(@2 + ) (2 +d?)

XY =

When the correlation coefficient of X, Y has magnitude less than 1, we can write the joint PDF of X,V
as

2 . . _ 2
1 1 <(w;;x) *QPX,Y(I wx)(y ;y)+(y /;y) >

T 20-0%y) 5 XY oy
fxy(z,y) = —¢
2roxoy/1—pxy

Thus, the joint PDF is fully specified by the first- and second-order statistics: the means px,py, the
variances 0%, 0%, and the correlation coefficient px y.

This is a difficult formula to remember, and it does not generalize to more than two Gaussian random
variables. However, we can write this in terms of vectors and matrices as follows:

2 —1
il B 0% Cov[X,Y] T — fg
1 omme vomllcoxy] a2 | |y-m

Ferto = o% Cov[X,Y] ‘
det (27 {COV[X, Y] ol ] )
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This form that uses the inverse of a matrix formed from the individual covariances generalizes well to three
or more Gaussian random variables.

An illustration of the joint PDF of X,Y in this general case is y ox
shown in the figure on the right. Note that the level sets of the <>
probability density function (curves where fx y(z,y) = K for
some constant K) are still ellipses, and the center of the PDF has
shifted to the mean (ux, iy ). The individual standard deviations
are measures of the relative elongation of the ellipses along each
axis. However, note that the major axes of the ellipses are no
longer aligned with the z and y axes, because X and Y are now
correlated and not independent. That is seen in the joint PDF Hx X
by the presence of xy terms in the exponent of the density. Note
that, if px y = 0, these terms vanish.

Figure 5.4: Correlated Gaussian PDF.

Jointly Gaussian random variables satisfy the following properties:

e Any linear function of X and Y plus a constant is Gaussian: If Z = aX 4+ 8Y + v, then 7 is
Gaussian with E[Z] = uz, Var[Z] = 0% where

pz = opx +Buy +v, 0y =a’ox + 2oy + 2a8Cov[X,Y]

The reason for this is that, since X,Y are linear combinations of independent, unit Gaussian random
variables U, V plus a constant, we can substitute for X,Y and write Z as a linear combination of U,V
plus a constant. We have already shown this is a Gaussian random variable.

e Marginal PDFs are Gaussian: X is Gaussian with E[X] = ux,Var[X] = 0% and Y is Gaussian
with E[Y] = py, Var[Y] = o%.

The function Z =1-X +0-Y is a linear combination, and hence it is Gaussian. We know its mean
and variance by computation as above.

e Uncorrelated = Independence: X and Y are uncorrelated (Cov[X,Y] =0 or pxy = 0) if and
only if X and Y are independent.

This follows by examining the form of the joint density function described above. If px y = 0, then we
can separate F'x y = fx(z)fy (y). In general, uncorrelated random variables are not independent. How-
ever, for jointly Gaussian random variables, uncorrelated Gaussian random variables are independent.
This means we can verify independence strictly using second-order statistics.

. | pX7y| = 1 if and only if Y is a deterministic linear function of X (and vice versa). In this case, we

can write Y as Y = px7ygl(X —px) + py.
ox

e Conditional PDF of X given Y = y is Gaussian: The conditional PDF fxy (z|y) of X given
Y = y is Gaussian with mean E[X|Y = y] and variance Var[X|Y = y] to be computed as:

Cov[X,Y]

T{Y](Q_MY)

g
E[X|Y =y] = px +px,y£(y—uy) =px +

~ Cov[X,Y]?

Var[X|Y = y] = (1 - pXy)ok = Var[X] Var[Y]
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Let’s derive this result. We know the following:

B 1 (@-nx)? (@—px)y—py) | (y—pny)?
2(17;)%(“,) < "%( 2px,y XYy + o2

1
fX,Y(‘Tay) =
2moxoy /1 — ng.,Y
1

- eQE—nxy=1v)  where

1 L \2 € Y Y \2
—_ - _ 2 — ) (=
Q) =5 (5 2 () + ()
1 L 2 Ty URY 2 Y \2
- L2 9 oL Y 1- Y
i (G = 20 (00 + om0 ) ()
2
= —122(96 — pXAany> — y—gz Hence,
2(1 = pXy)ox oy 20%
2
1 r— _ OX () 7(y—uy)2
fxy(z,y) = ! e JTrRYIR (( SR W)> 2oy

1 7X
.. 1 _m((x—ux)—ﬂx,ya(y_NY))
Ixpy (zly) = ij’ci((y)y) = 2 (Vamoy)e o )
QWUXUYW
2
1 ,W ((m,ux) - PX‘Y:.;((y/—LY)>
= e '

oxy/2m(1 = pX y)

We recognize the above expression as a Gaussian density, with statistics

- - ox _ COV[X, Y]
EX|Y =y| = ux + pxy p (y—py) = px + Var[v] (y — py)
Cov[X,Y]?

Var[ XY =y] = (1 - P%{,Y)Ug( = Var[X] Var[Y]

Notice that the conditional covariance does not depend on the actual observed value Y = y; it only
depends on the second order statistics of X, Y. Notice also that the conditional covariance Var[X|Y = y]
is no larger than the unconditional covariance Var[X], as we are subtracting a nonnegative term.

The above formulas for the conditional mean and variance are very important in estimation, as we will
illustrate in a subsequent chapter. Specifically, E[X|Y = y] is an estimate of the random variable X based
on measuring that the random variable Y has value y. Define

Cov[X,Y]

Var[Y] ¥ —ny).

e=X-EX|Y]=X—pux —

Then, this is the error in the estimate of X given observation Y. In this case, e is a linear function of X and
Y plus a constant.

Note some important properties of the estimation error:

e Ele(y)] = 0. This follows directly by noting that e = X — Cf/‘;[r)[i;)]/] Y, and thus it is a linear combination

of zero-mean random variables.
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e E[e?] = Var[X|Y = y]. Note that Var[X|Y = y] is a constant that does not depend on y. This follows

because
Ble?] = BLX?) - 2 e BT+ (S )
= Var[X] — 203/\;[?[(}’/,]}/]Cov[X7 Y]+ (Cc\)/\;[r)[(};}y]fVar[Y]
B Cov[X,Y)?
= Var[X] — V]

B A more subtle proof of the above uses iterated expectations, as
Ele*] = E[E[e*|Y]] = E[Var[X|Y]] = Var[X|Y],
which follows because Var[X|Y] is a constant that does not depend on Y.

e Cov[e,Y] = 0. This states that the estimation error is uncorrelated with the measurement Y. We
compute this directly as

. CovlX,Y].. - Cov[X,Y]

Covle,Y] = E[(X Var[Y] )Y] = Cov[X,Y] — Var[Y] Var[Y] = 0.

e E[eY] =0, so that the estimation error is orthogonal to the measurement Y. This is because E[eY] =
Covle,Y] + E[e]E[Y] = 0 because E[e] = 0 and Cov[e, Y] = 0.

e ¢, Y are jointly Gaussian, since e is a linear transformation of X,Y, and Cov[e,Y] = 0, then ¢,Y are
independent!

Example 5.8
Let X,Y be zero-mean, unit variance Gaussian random variables with correlation coefficient px y = 0.5. Compute the
covariance of X and Y. Compute the conditional probability density of X given Y = 2.

From the correlation coefficient definition,
Cov[X,Y]

= MAY] _ covlx, Y] = 0.5.
Py Var[X|Var[Y] [ ]

For the conditional density, we know it is Gaussian, so we compute the conditional mean and the conditional covariance.

E[X|Y = 2] = E[X] + %ﬁﬁ](z —E[Y])=05-2=1.
Var[X|Y = 2] = Var[X] — % =1-0.25=0.75.

The conditional density is Gaussian with mean 1, variance 0.75.

Example 5.9
Assume that X, Y are correlated, jointly Gaussian random variables, such that E[X] = E[Y] = 1,Var[X] =1,Var[Y] =1
and Cov[X,Y] = 0.5. Define derived random variables A =2X —3,B =X —2Y.

1. Are A, B Gaussian?

Yes. Linear combinations of joint Gaussians are Gaussian.
2. What are E[A],E[B]?

Using the linearity of expectations, E[A] = 2E[X] — 3 = —1. E[B] = E[X] — 2E[Y] = —1.
3. Compute Var[A], Var[B].

Since A is a scaled version of X, translated, we have Var[A] = (2)®Var[X] = 4. For B, we use the method for
representing the zero-mean random variables B, X, Y, so that

Var[B] = E[B?] = E[(X — 2Y)?] = E[X?] — 4E[XY] + 4E[Y?] = Var[X] — 4Cov[X, Y] + 4Var[Y] = 3.
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4. Compute Cov(A, B).
Proceeding as before with the zero-mean representations,

Cov[A, B] = 2E[X?] — 4E[X Y] = 2Var[X] — 4Cov[X,Y] =2 — 2 = 0.

5. Are X,Y independent? Explain.
They are clearly not independent, since the covariance is non-zero.
6. Are A, B independent? Explain.
Yes, they are independent, because they are uncorrelated and Gaussian.
7. Compute E[Y|A = a].
We know E[Y|A =a] = E[Y] + %ﬁf}/l(a — E[A]). We have most of those terms computed, except for Cov[A, Y],
which is Cov[A,Y] = E[AY] = E2XY] = 1. Hence, E[Y|[A =a] =1+ 1(a +1).
8. Let e =Y — E[V|A = a]. Compute E[e?].

Since e is the conditional estimation error, this is asking for the conditional variance Var[Y|A = a] = Var[Y] —
Cov[Y,A]? -1 1 _ 3
Var[A] — - 4

=7

9. Compute the covariance between B and Y.

By now, we know how to do this with the zero-mean versions:

Cov[B,Y] = E[BY] = E[(X — 2V)¥] = Cov[X, Y] — 2Var[Y] = 7;

Example 5.10

Suppose we have two jointly continuous random variables X, Y, with marginal
probability densities fx (z), fy(y) that are Gaussian. Must the pair X,Y be
jointly Gaussian random variables?

Surprisingly, the answer to this is no. Consider the following jointly continuous
random variables X, Y with joint PDF given by

0 otherwise.

2,2
1 —zfty
~e 2 0 < zy,
fxy(z,y) = {” =

This density is illustrated in the figure on the right. As you can see, it is definitely
not a Gaussian, since the range of (X,Y) is not all of ®2. The marginal density ~Figure 5.5: Non Gaussian PDF

of X is: with Gaussian marginals.
1 ,ﬁ f ¥ d 1 ,ﬁ > O
R <€ 2 e 2 dy=—=—e 2 €T s
fx(z) = / fxy(z,y)dy = 1 a2 00 42 2 22
—oo ze 7 Jo e T dy= 7\/12?677 z <0

which is Gaussian. Similarly, the marginal density of Y is Gaussian. This shows that having Gaussian marginal densities
does not guarantee that the joint density is Gaussian.

5.5 Random Vectors

So far, we have focused our analysis on pairs of random variables X,Y. Nevertheless, the theory that we
introduced for pairs of random variables extends easily to higher dimensional vectors. Given a probability
space (9, &, P), we can define a random vector as a function that maps outcomes w € (2 to vectors z(w) that
take values in ®", an n-dimensional Euclidean space. The theory of random vectors parallels the development
we have presented for pairs of random variables. We can define the cumulative distribution function Fx (z)
for general random vectors. If the random vectors are discrete, one defines the joint Probability Mass
Function Px(z) in a similar manner as we did for pairs of random variables. Random vectors are jointly
continuous if there is a density fx(z) such that the joint CDF can be written as

F&@):/--~/f§(ah~-~ Lap)day -+ day,.
<z

a
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While all of this is formally interesting, one seldom has enough information to compute the full multidi-
mensional joint probability density of random vectors, unless one has extra structure. For instance, if the

T . n
components of the random vector X = [Xl Xy - Xn] are independent, then fx(z) = ] fx,(zk)-
k=1
However, it is much easier to compute statistics such as means, variances and covariances.
In this section, we focus on defining first- and second-order statistics for random vectors, and describe
how they change as the random vectors undergo linear transformations. We show subsequently how to

extend our analysis of pairs of jointly Gaussian random variables to Gaussian random vectors, where the full
joint PDF can be defined in terms of first- and second order statistics.

Let X be a random vector with values in R"™. We assume random vectors are column vectors, so

X, E[X;]

X5 ) E[X5)
X = . |. We define the mean of X, or its expected value, as E[X] = .

X, E[X,)

Since expectation is a linear operation, this is simply the vector of expected values, one for each random
variable in the random vector X. For pairs of random variables X,Y, this corresponds to stacking the
individual expected values into a vector, as

For pairs of random variables X, we define the covariance matrix > x as

x =

{ Var[X]  Cov[X, Y]]
Cov[X,Y]  Var[Y]

Note that this is a symmetric matrix. We can write this covariance matrix as:

Yy — { E[(X — E[X])?] E[(X —E[X])(Y E[Y])}]
= [E[(X -EX)(Y - E[Y])] E[(Y — E[Y])?]

:EH (X - E[X])? (X—E[X])(Y—IE[Y])]“

(X - E[X])(Y - E[Y]) (Y —E[Y])? ’

—E|(X - E[X])(X - E[X))"

where X7 is the transpose of the column vector, resulting in a row vector. Hence, the covariance matrix is the
expected value of the outer product between a column vector of dimension 2, and a row vector of dimension
2, resulting in a 2 x 2 matrix. Note that this is simply arranging the scalar statistics Var[X], Var[Y], Cov[X, Y]
in a matrix form. We can generalize this to n-dimensional random vectors.

For an n-dimensional random vector X, the covariance matrix is an n X n matrix defined as
Tx = E[(X - E[X])(X - E[X])”]

Using the linearity property of expectations, and multiplying the matrix, we get

Yx =E[XXT - E[X]XT - XE[X|” + E[X|E[X]"]

X7| - E|XE[X])") + E[EIX]E[X]”]

]
-XXT] - E[K]IE[XT} - E[X}E[K]T +E[X]E[X]T (Take out constants from expectations)

E
2] -seix
E
E

_XXT] - EX]E[X]T (add the last 3 terms, which are the same.)
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This is the generalization of the scalar identity Cov[X] = E[X?] — (E[X])? to the vector case. As in the scalar
case, the covariance matrix can be computed as the difference between the second moment matrix E [X X T}

and the outer product of the mean vectors E[X]E[X]T.

Note that every element in the covariance matrix is either a variance of a random variable, or a covariance
between two random variables. Specifically,

Var[Xl] COV[Xl,XQ] tee COV[Xth]
Cov[X1, Xo] Var[X5] -+ Cov[Xa, X,]
Yx =. ) ) . )
Cov[X1,X,] Cov[Xs, X,] -- Var[X,]

Thus, the covariance matrix is a compilation of the second order statistics for the scalar components of the
random vector X.

The covariance matrix ¥ x has the following properties:

It is a symmetric matrix.

It is a positive semidefinite matrix: for any non-zero n-dimensional vector a, the scalar defined by the
matrix vector product a’ ¥ xa > 0. See the appendix on linear algebra for details on what positive
semi-definite means.

The matrix > x has all of its eigenvalues on the real line, and they are non-negative.

The matrix > x has n distinct eigenvectors, and each eigenvector is perpendicular to the others.

These properties will be useful in later chapters when we discuss problems of feature aggregation in data
science problems. We briefly justify the most important property, that states that the covariance matrix must
be positive semidefinite. Note the following: Given a random n-dimensional vector X and an n-dimensional
constant vector a, the random variable Z = a7 X is a linear combination of the elements of X. If X were
zero-mean, then E[Z] = E[a” X] = aTE[X] = 0. Thus, Z is also zero mean, with variance

Var[Z] = E[Z?] = E[QTXXTQ] since a’ X = X7Ta,
=d"EXX"a=a"Yxa >0

Thus, the positive semidefinite property follows because covariances of random variables are non-negative.
Note how we carefully moved the constants a from the correct side of the expectation to keep the dimensions
matching for the vector-matrix products.

Example 5.11
Suppose we have jointly continuous random variables X = [X1, X2, X3]7, with joint probability density function

6 0<z<mz2<235<1,
fx (&) =
0 elsewhere.

Compute the covariance matrix X x.
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The range Rx of the density is shown on the right. We can see that it is an inverted
triangular pyramid with base area 0.5 and height 1, so its volume is %, hence we use

6’ —
the density in th . )
the constant 6 as the density in the range xs\\ //
We begin by computed the expected values: -\ / /
“ \ ¥/
1 z3 T2 1 3 1
E[X,] = ///xlfi(g) d@z/ (/ (/ 621 dml)dmg)dxg :/ r3drs = —
0 0 0 0 4
TERx -
1 T3 To 1 3 1 - ::f‘n oz %
E[X,] = ///mgfé(g) dg:/ (/ (/ 622 dxl)datg)dmg :/ 2z3drs = = 1
0 0 0 0 2
gERi
1, ey pwo 1. 3 Figure 5.6: Range for Exam-
E[X3] = ///$3f£(£) d@z/ (/ (/ 6x3 dxl)dxg)dxg :/ 3x3drs = — 1
- 0 0 0 0 4 pie.
zEhix

Next, we compute the second moments:

E[X%]:///x%fm)dg:/ol (/f(/fax%dxl)dm)dm:/Oédmg:%

zERx
2 2 ! s 2, ! 343% 3
E[XQ]:///ng&(g)dgz/ / (/ 6x5 dr1) dzs da:3:/ —drz3 = —
o 0 0 0 o 2 10
zehx
2 2 ! BN P L4 3
E[X3] = ///ngé(g) c@:/ (/ (/ 6x3 dxl)dmg)d:vg :/ 3x3drs = 3
0 0 0 0
z€Rx

Finally, we compute the covariances between the components of X as

1 x3 x9 1 4
E[X1X5] = ///acla:gf&(g) dz = / / (/ 6x172 dx1) dre |drs = / %dxg _3
0 0 0 o 4 20

zERx
1 x3 xo 1 4 1
]E[Xng] = ///l‘lwg‘f&(l) d@z / (/ (/ 6$1$3 dwl)dx2>da:3 = / T3 dl’g = g
S€Ry 0 0 0 0
1 x3 x9 1 4 2
E[X:X3] = ///xzng&(@) dx = / (/ (/ 62213 d:nl)dx2>dx3 = / 2x3 drs = 3
0 0 0 0
TERX

Thus, the variances and covariances are given by:

VarlX1] = E[X?] - (E[X1]* = -~ 1o = &

VarlXa] = BIX3] - (BLXG) = & — 1 = 5

Var[Xs] = BIX3] - (BIX))* = 2 - o = =
Cov[X1, Xo] = E[X1 Xa] — E[X1|E[Xa] = 2% _ é - 410
Cov[X1, Xs] = E[X1 Xs] — E[X,]E[Xs] = é - o= 187)
Cov[Xa, Xs] = E[X2Xs] — E[Xa]E[X3] =  — % ==

The full covariance matrix is

0.1 0.15 0.2 0.25 0.0375 0.0250 0.0125
>*x =015 03 04 —-1]05 [0.25 0.5 0.75]: 0.0250 0.0500 0.0125

02 03 06 0.75 0.0125 0.0125 0.0375
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Assume we have a random n-dimensional vector X with mean my and covariance X x. Define an affine
transformation of X as follows: Let A be an m X n matrix, and d be an m-dimensional vector. The
m-~dimensional random vector Y is given by:

Y=AX+d
We want to compute the first- and second-order statistics of Y based on knowing the statistics of X.
It is easy to compute the mean using linearity of expectation:
E[Y] = E[AX + d] = E[AX] + E[d] = AE[X] + d = Amy +d

where we have pulled out constants from the expectations. Note that, since we are dealing with matrices
and vectors, we move the constant matrix A out on the left side of the expectation, so that the dimensions
of the matrices agree when doing matrix-vector multiplication.

To compute the covariance matrix of Y, we subtract the mean from both sides, to get:
Z_E[Z} =AK+d—Am§—d= A(X—mi)

Using the definition of covariance, we compute it as follows:
T
Ty —B|(¥ - EIYD(Y - BY)T| = B|AG - my) (A - my)) |
=E [A(X —my)(X — mX)TAT}

= A]E[(X —my)(X — mX)T] A"
=AX A"
This is the generalization of the scalar scaling law for covariances, where if Y = aX, then Var[Y] =

a?Var[X]. The extension to vectors is careful to keep the order of the scaling by A and A’ to keep the
dimensions of the resulting matrix correct.

Example 5.12

Let's revisit the example of 5.7. We have a pair of random variables X, Y with first- and second-order statistics E[X]| =
E[Y] =0, Var[X] = Var[Y] = 1, Cov[X, Y] = 0.

Let's form this into a vector X = Eﬁ

} . The mean vector my = [8

Define two new variables defined as U = 3X +2Y 4+ 1,V = 2X — 3Y — 1. Define the vector W = {‘[i
3 2 1

w-y Gl [

Then, the first- and second-order statistics of W are:

W] = B _23} ELX] + {_11} = [_11} :

} and the resulting covariance matrix is

M

>

Il
| —
owim
Al O

} . We can write

the transformation from X to W as:

3 1 13
-1 A -
=3l 1z i 0 7

which says that Var[U] = £, Var[V] = £, Cov[U, V] = 0. These are the same answers we saw in Example 5.7.
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Example 5.13
Let’s revisit Example 5.9. Assume that X, Y are correlated random variables, such that E[X] = E[Y] = 1, Var[X] =

X} . Then,

1,Var[Y] =1 and Cov[X,Y] = 0.5. Let X = {Y

Using this equation, we obtain

E[W]

2
1 0
2 0][1 05
e P [0.5 1}
2
1

I
©
=
=
+

and thus Var[A] = 4, Var[B] = 3, and Cov[A, B] = 0, agreeing with the results from Example 5.9.

As the examples illustrate, the use of random vectors enables us to recover the same first- and second-
order statistics for the random variables when we analyze them individually as pairs of random variables.
The advantage of the vector notation is that it scales nicely to compute statistics for random vectors of
dimension greater than 2, exploiting simple results from linear algebra.

5.5.1 Gaussian random vectors

A special case of random vectors is what are termed Gaussian random vectors. For pairs of jointly
Gaussian random variables X, Y, their joint PDF is completely characterized by the first- and second-order
statistics. Extending this to random vectors of dimension greater than two is straightforward, as we will
show below.

We define a jointly Gaussian random vector as a generalization of what we did with pairs of random
variables. First, we define n independent standard Gaussian random variables Z; ~ N(0,1). We define the
vector

Then, an n-dimensional random vector X = . is defined to be a Gaussian random wvector (or
Xn
equivalently, {X7,...,X,} are defined to be a set of jointly Gaussian random variables) if

X=AZ+b>

for some n x n matrix A and some n-dimensional vector b.
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Note that Z has mean 0, with covariance matrix as the nxn identity matrix I,,. Hence, E[X] = AQ0+b = b.
Furthermore, the covariance matrix of X is

Yx = AT AT = AAT.

For a Gaussian random vector Z to be jointly continuous, the transformation A must be invertible. This
means that the resulting covariance ¥ x is invertible. We focus only on jointly continuous random Gaussian
random variables in this text.

X1
Xo
An equivalent definition is that X = . | is a Gaussian random vector if, for all constant vectors
Xn
ai
an n
a = , the random variable Z = Zk:l ar Xy is a Gaussian random variable. Note that Z = a7 X in
anp,

vector notation. As noted before, it is not enough that each entry X; is marginally a Gaussian random
variable for the vector to be a Gaussian random vector! All linear combinations of the entries must also be
Gaussian. The converse, however is true: the entries of a Gaussian random vector are individually Gaussian
random variables.

If X had mean my and covariance X x, then Z = aT X is a scalar Gaussian random variable with mean
E[Z] = a’my and variance a”¥ xa.

A jointly continuous Gaussian random vector X have a probability density function that is completely
described by its mean my and covariance ¥ x. We use the notation X ~ N(my, X x) to denote this density.
We can write the joint PDF of X as

]. 1 T —1
_ —z(@—mx)" (Tx)” (z—-my)
r) = ————¢ 2 X Ea X/
fx(z) 2m)ndet(zx)

An important property of pairs of jointly Gaussian random variables X,Y is that they are independent
if and only if Cov[X,Y] = 0. For Gaussian random vectors, the components X, Xo, ..., X,, are mutually
independent if and only if Cov[X;,X,] = 0 for all 4,5 € 1,...,n,i # j. What this means is that the
covariance matrix X x is diagonal, with zeros in all the non-diagonal entries. For independent random
vectors, the covariance matrix is

Var[X1] 0 e 0
0 Var[Xs] --- 0
Xx = . ) .
0 0 Var[X,,]
In this special case,
1
Var[X4] (1) 0
Zil _ 0 Var[.Xz] 0
0 0 Var[lX,L]

and the joint probability density factors as

_ (@ —my)?
Var[ X
— ¢ 2Var[X ] ,

1;[ \/27rVar Xk]

which shows the equivalence between independence and having a diagonal covariance matrix.
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Example 5.14
Let’s revisit Example 5.12 where X, Y are jointly Gaussian random variables with first- and second-order statistics E[X] =
E[Y] =1,Var[X] =1,Var[Y] =1 and Cov[X,Y] = 0.5. Let X = Kﬁ} . Then,
1 1 05
ElX]= H o Ex= {0.5 1 } '
Define W as

w=* x4 (-3 0]

— |1 =2
Then, from Example 5.12, we know

-1 4 0

which implies that the two components of W are uncorrelated, and hence, mutually independent. The joint density of W
is Gaussian, and given by

Fur(w) ( 1 _ <w18+1>2) ( 1 _ (w26+2>2)
w) = —e e ,
5T\ Ve N

which shows the factored form.



Chapter 6

Detection Theory

In this chapter we start our investigation of statistical detection theory, also referred to as hypothesis testing
or sometimes decision theory. The fundamental problem in statistical detection theory is summarized as
follows: In a probability experiment, one and only one of several possible events has happened. After
collecting observations with distributions that depend on which event happened, make a decision as to
which one of the events actually happened. To illustrate this, consider the following example:

Example 6.1

A sonar system transmits pressure pulses into the water in a given direction, hoping to determine whether a submarine is
present in that direction or not. The pulses propagate through the water, and interact with background as well as with
a submarine if it is present. The sonar receiver listens for echoes, which may come from the submarine, as well as from
background such as ocean floor features, large sea mammals, school of fish, etc. The receiver collects the echoes, and
must decide whether there is a submarine present or not based on the received signal.

Note the key components of this problem. There are two possible events, corresponding to many different
outcomes in the sample space: the event where a submarine is present in the direction of the sonar pulses,
and the event where the submarine is absent. These events are disjoint, and in the terminology of probability
events, collectively exhaustive: one of the two events must happen. We collect a measurement, which is a
random variable that is a function of the outcome in the experiment. Based on the observed measurement,
we must make a decision as to which one of the two possible events is “best to choose.”

Ho
Outcome)
i v Decisi 0
ecision L
Rule D(y) 1

Hy
Outcorre=—
®

Observations

Figure 6.1: Detection problem components.

A general model of this process is shown in Figure 6.1. There are two possible events in the sample
space (2, each of which represents many outcomes. Each of these events is called a hypothesis. We use a
measurement instrument that collects a random variable Y. Based on the measurement observation ¥ =y,
we must design a rule to decide which is the correct hypothesis.

From Figure 6.1 we see that we will need three components in our model:

1. A model of generation processes that creates Hy, Hy.
2. A model of the observation process that generates the observation Y = y.

3. A decision rule D(y) that maps each possible observation value y to an associated decision.
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In general, the first two elements are set by the experiment or the restrictions of the physical data
gathering situation, and we need to model them, but we don’t control their design. For example, if we are
trying to decide whether an area in a breast cancer mammogram is cancerous or not, the true state of that
area (cancerous or not) is selected by processes outside of our control. The measurement instrument (the
X-Ray imager) is a physical sensor that generates noisy images depending on whether the area is cancerous
or not.

We want to avoid generating a complete description of the probability space (2,€,P) to model the
relationship of the observations Y and the event hypotheses Hy, H;. Assume Y is a discrete random variable.
Using the Law of Total Probability yields

PHY =y}] =P{Y =y} N Ho] + P{Y =y} N Hy] = P{Y = y}|Ho|P[Ho| + P{Y = y}|H,|P[H,]
= Pyn, (y)P[Ho] + Py g, (y)P[H;]

This indicates the components of how we model the detection problem:

1. A model of generation processes that creates Hy, Hy: P[H;],P[Hy].

2. A model of the observation process that generates the observation Y = y: P{Y = y}|Ho|,P{Y =
yHH].

This is a compact, probabilistic description that represents the detection problem. Based on this model,
we design a decision rule that maps the possible measurement values into a decision. When there are only two
possible hypotheses Hy, H1, this decision rule corresponds to a partition of the space of possible observations
into two regions: the region where the decision will be Hy, and the region where the decision will be Hy, as
illustrated in Figure 6.2.

Declare

Observation
<4 Space

Figure 6.2: Illustration of a decision rule as a partition of the observation space into disjoint regions, illus-
trated here for the case of two possibilities.

We first discuss in detail the case that arises when there are only two possible hypotheses, termed binary
hypothesis testing. Subsequently, we discuss the more general case of M hypotheses, for M > 2.

6.1 Binary Hypothesis Testing

In this section we consider the simplest case when there are only two possible states of nature or hypotheses,
which by convention we label as Hy and H;. This situation is termed “binary hypothesis testing” and the
Hy hypothesis is usually termed the “null hypothesis,” due to its typical association with the absence of
some quantity of interest.

The binary case is of considerable practical importance, as well as having a long and rich history. Let’s
examine a few motivating applications before proceeding to more detailed developments.
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Example 6.2 (Communications)

Consider the following simplified version of a communication system, where a source broadcasts one bit, (either 0 or 1)
The transmitter encodes this bit by a voltage, which is either 0 or E, depending on the bit. The receiver observes a noisy
version of the transmitted signal, where the noise is additive, and is represented by a random variable w with zero-mean,
variance o2, and Gaussian distribution. The receiver knows the nature of the signal E, the statistics of the noise o2, and
the apriori probability p(k) that the bit sent was k, where k = 0, 1. The receiver must take the received signal, y, and map
this using a rule D(y) into either 0 or 1, depending on the value of . The problem is to determine the decision rule for
which the probability of receiver error is minimized.

Example 6.3 (Radar)

A simple radar system makes a scalar observation y to determine the absence or presence of a target at a given range
and heading. If a target is present (hypothesis H1), the observed signal is y = E + w, where E is a known signal level,
and w ~ N(0,0?). If no target is present (hypothesis Hp), then only noise is received y = w. Find the decision rule for
maximizing the probability of detecting the target, given a bound on the probability of false alarm.

Example 6.4 (Quality Control)

At a factory, an automatic quality control device is used to determine whether a manufactured unit is satisfactory (hypothesis
Hy) or defective (hypothesis H1), by measuring a simple quality factor q. Past statistics indicate that one out of every
10 units is defective. For satisfactory units, ¢ ~ N(2,0?), whereas for defective units, ¢ ~ N(1,02). The quality control
device is set to remove all units for which ¢ < t, where t is a threshold to be designed. The problem is to determine
the optimal threshold setting in order to maximize the probability of detecting a defect, subject to the constraint that the
probability of removing a satisfactory unit is at most 0.005.

All of the above examples illustrate the problem of binary hypothesis testing. We will develop the relevant
theory next.

6.1.1 Detection model

The detection problem is set in a probability space (2, €, P), which we

model in a very abbreviated way. Assume there are only two hypoth- H H
esis, denoted as Hg and Hy, which are events in £ are events in the 0 1
which are mutually disjoint, and collectively exhaustive (HyUH; = Q).
We know P[Ho],P[H1]. The figure on the right illustrates the events
Hy, Hy in the sample space, representing a partition of ).

Figure 6.3: Events Hy, H;.

Observation model: The measurement is a random variable Y defined on (Q,&,P). Y can be either
discrete or continuous. For discrete Y, we model the measurement using a pair of conditional probability mass
functions Py g, (y), Py|#,(y). For continuous Y, we model the measurement in terms of a pair of conditional
probability density functions fy g, (¥), fy|#, (y). These conditional probability functions are known, and are
referred to as the likelihoods of the measurement Y = y given the different hypotheses.

The figure on the right illustrates the observation model. Note that
outcomes in Hy and outcomes in H; can map to the same observation
Y = y. However, it may be more likely to occur under one of those
two hypotheses, as determined by the likelihoods Py|g, (y), Py, (¥)
or fym, (Y), fy|m,(y). These likelihoods will influence which decisions
to make.

Figure  6.4: Likelihoods
Py, (y), Py 1w, (y)-

Decision rule: A decision rule is a function U = D(Y") of the random variable Y, that maps Y into a
decision U € {0,1}. The decision D(y) = 0 corresponds to deciding that Hy is the selected hypothesis when
the observation is Y = y, and D(y) = 1 indicates that H; is the selected hypothesis for Y =y. U = D(Y) is
a discrete random variable, mapping the range Ry into two possible values. The sets {y € Ry : D(y) = 0}
and {y € Ry : D(y) = 1} form a partition of Ry, because D(-) is a function defined everywhere on Ry-.
This is illustrated in Figure 6.2.
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The decision rule is the solution we design for the detection problem. To do proper design, we select the
decision rule on the basis of how good its performance will be.

Truth

One way to measure performance is in terms of the errors made by Ho H,4
the decision rule. Specifically, when Hj is true, and generates a mea-

surement Y = y such that D(y) = 1, the decision rule has made an c U=0 | CORRECT | MISSED
C o] DECISION [DETECCTION
error. The figure on the right illustrates the two types of error that the =
decision rule can make. When Hj is the event that generates. mea- '8
surement Y = y, and the decision rule selects D(y) = 1, we call this a QO U=1| FASE | CORRECT

ALARM DECISION

false alarm. This terminology dates back to early detection problems
such as detecting aircraft using radar, where Hy was the hypothesis
that no airplanes were present. Similarly, when the measurement y is
generated by Hy, and D(y) is such that D(y) = 0, we refer to this as Errors.
a missed detection.

Figure 6.5: Types of Detection

Given a detection rule U = D(Y), we can compute the probability of a missed detection using the
likelihood Py g, (y) if Y is discrete or fy g, (h) if Y is continuous. Denote by Ay the subset of the range of
Y where D(y) = 0: A9 = {y € Ry : D(y) = 0}. Then, the probability of a missed detection is

P Y is a discrete random variable,
PMD = P[y c A0|H1] — ZyGAO Y|H; (y) . . .
fy Ay fyvim, (y)dy Y is a continuous random variable.

Thus, Py/p is the probability of making an erroneous decision when H is true.

Similarly, let A1 = {y € Ry : D(y) = 1}. Then, Ay U A; = Ry, the range of possible values of Y. The
probability of a false alarm is computed using the likelihood Py g, (y) if Y is discrete or fy g, (h) if Y is
continuous as follows:

P Y is a discret d iable,
Pra = Ply € Ay|Ho] = > yea, Py, (v) ?s a 1scr.e e random varia .e
fyeAl Jyim,(y)dy Y is a continuous random variable.

Pr 4 is the probability of making an erroneous decision when H; is true.

Note that Ppa, Py p are conditional statistics. If we know P[Hy], P[H;], we can compute unconditional
statistics such as the average probability of error using the Law of Total Probability, as:

P, = P[Error] = P[Error|Hy|P[Hy| + P[Error|H,|P[H;] = PralP[Ho| + Py pP[H:].

We can now use these performance measures to define criteria for selecting a decision rule. We describe
different approaches for designing decision rules next.

6.2 Maximum Likelihood Detection

The most common approach for designing a decision rule is known as maximum likelihood detection.
Assume that Y is a discrete random variable. Given a measurement y, we compute the likelihood of this
measurement under each hypothesis, using Py|x, (y) and Py g, (y). The maximum likelihood (ML) decision
selects the hypothesis that has the largest likelihood for that measurement. That is,

DML(y) = L, Pyia,(y) = Py, (),
0, Pyim,(y) < Pyim,(y).

We break ties arbitrarily, so we assign a tie to 1.

The maximum likelihood method for detection and estimation was developed by the statistician R. A.
Fisher in the early 20th century, although some limited results appeared earlier.
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Example 6.5

Assume we have a coin, which may be biased so that the probability of obtaining heads is 0.6. Hypothesis H; is that the
coin has probability of heads = 0.6. Hypothesis Hj is that the coin is unbiased, so the probability of heads = 0.5. To
detect whether the coin is biased or not, we conduct an experiment, where we flip the coin independently 5 times, and
count the number of heads that appear in the experiment. Thus, the measurement in the experiment, Y, is the number
of heads in five coin flips.

Y is a discrete random variable, with Ry = {0,1,2,3,4,5}. The above description lets us describe the likelihood
functions: Py g, (y) is the probability mass function of a Binomial(5,0.5) random variable, and Py, (y) is the probability
mass function of a Binomial(5,0.6) random variable. In this case, the range Ry is small, so we can enumerate the two
probability mass functions, and compare their values for each y € Ry, as shown in the table below.

Cy: [ o | 1 [ 2 [ 3 4 5
Pyiu, || 0.01024 | 0.0768 [ 0.2304 [ 0.3456 | 0.2592 | 0.07776
Py, || 0.03125 | 0.15625 [ 0.3125 | 0.3125 | 0.15625 | 0.03125

To compute the maximum likelihood decision, we compare the numbers in each column, and pick the larger of the two
numbers. In the table above, we have highlighted the larger number in bold and magenta color. Thus we see that the
maximum likelihood decision rule becomes:

D]WL(y) _ 17 Y= 354757
0, y=0,1,2.

The decision agrees with intuition: a larger count of heads suggests the coin is more likely to be unbalanced, whereas a
smaller count of heads indicates the coin is more likely to be balanced.

What is the performance of the maximum likelihood decision rule? Let's compute the probability of missed detection.
As discussed above, this is the probability that, when H; is the correct hypothesis, we get a value y where the decision
DMZE(y) is 0. Therefore,

P]WD = ]P)[{y = 07 1, 2}|H1} = PY\Hl (0) + PY\Hl(l) + Py|H1 (2) = 0.31744.

Similarly, the probability of false alarm is the probability that, when Hy is the correct hypothesis, we get a measurement
Y =y where DX (y) = 1. Then,

Pra =P{y =3,4,5}|Ho] = Pyu,(3) + Pyin,(4) + Py, (5) = 05
Assuming that P[Ho| = P[H1] = 0.5, we can compute the probability of error as
P. = P[Ho|Pra + P[H1|Pyp = 0.40872.

We can rewrite the maximum likelihood decision rule in terms of a ratio. Define the likelihood ratio

as a function of the measurement value Y = y, as
Lly) = Py, (y)

PY|H0 (y)

The maximum likelihood decision rule can be written in terms of the likelihood ratio as

1, Ly)>1
DML (y) — ) (y) ]
0, L(y)<1.
H,
We abbreviate this decision using this notation: DME(y) = {L(y) = % 2 1}. This indicates that,
0 H,

when the inequality is in the “greater than” direction, the decision selected is that of hypothesis H;, and
when the inequality is reversed, the decision selected is that of hypothesis Hy.

We can often compute the maximum likelihood decision rule analytically using the expressions for the
probability mass functions and the likelihood ratio. For Example 6.5, the likelihood ratio is

°)(0.4)57¥(0.6)Y 5-y y
ﬁ(y)i(y)( )>4(0.6)  (0.4)5¥(0.6)

~ (s (05)°

=25(0.4)>7Y(0.6)¥ = (0.8)°(1.5)¥



146 CHAPTER 6. DETECTION THEORY

Py, (y) Iil 1.

Py, (y) I§o

We want to compare £(y) to 1. Therefore, the maximum likelihood detection rule is L(y) =

To compute the performance of the maximum likelihood detector, we need to identify the values of Y =y
for which DML (y) = 0 and for which DMZ(y) = 1. When we enumerate the likelihoods for all values of
Y =y as in Example 6.5, this is straightforward. For larger Ry, enumeration is impractical, so we need to
further simplify the maximum likelihood decision rule to determine these regions.

To simplify this, we make the following observation: L(y) > 1 <= In(L(y)) > 0. Computing the
logarithm of the likelihood ratio £(y) yields In (£(y)) = 51n(0.8) + yIn(1.5). Then,

51n(1.25)

In(L(y)) >0 < y > lln(1.5)

~ 2.751.

Thus, for y = 3,4, 5, the likelihood ratio £(y) is greater than 1, and for y = 0, 1, 2, the likelihood ratio is less
than 1. This is the same maximum likelihood decision rule derived in Example 6.5.

Using logarithms often makes it easier to identify the decision rule in terms of a region of values of y, as
we saw above. We can write the maximum likelihood decision rule in terms of the log-likelihood ratio,
the logarithm of the likelihood ratio, as DM%(y) = {In (PYHl ) 0}.

Py |1, (

Example 6.6

Radar systems usually send trains of pulses to detect the presence of aircraft in the direction the radar is aimed at. Each
of these pulses potentially generates a reflection; for each pulse, a decision as to whether an aircraft is present or not can
be made based on the received pulse signal strength, comparing it to a threshold. The final decision for detecting the
presence of aircraft is based on the total number of pulses received that had sufficient signal strength. The detections on
each pulse are assumed to be independent, conditioned on whether an aircraft is present or not.

Assume that the probability of detecting an aircraft in a single pulse, assuming the aircraft is present, is p;. If the aircraft
is not present, the probability of having enough background signal strength to generate a detection is pg. Assume that n
pulses get transmitted, and p; > po. What is the maximum likelihood detector?

The problem is stated in terms of two hypotheses: H; is where the aircraft is present, and Hy is where there is no aircraft
present. From the problem description, the observation Y consists of the number of pulses that generate a detection, which
can take values in {0,1,...,n}. The likelihood Py g, (y) is a Binomial(n,p:1) distribution, and the likelihood Py g, (y) is
a Binomial(n, po) distribution.

Since n,p1,po are left as variables, we cannot simply enumerate the possible values of Y in a table and find the best
decision for each value of y. Nevertheless, we can analyze this using log-likelihood ratios, as:

Py (y) (Z)pllj(l —p)"Y _(1=pi\"/(p1(1 = po)\¥
L(y) = Py|H0(y) B (Z)pﬁ(l—po)"‘y B (1 —po) (p0(1 —pl))

el = nln(i :gcl)) +yln( (501((11 —_;510)))

We see that the log-likelihood ratio is increasing in y (because p1 > po, so 1 —p1 < 1 — pg.) Furthermore for y = 0, the
log-likelihood ratio is negative. Hence, there is a value of y for which the log-likelihood ratio equals 1. That value is

. _ nln(l —po) —nln(1 — p1)
In(p1(1 = po)) — In(po(1 — p1))

For instance, if p1 = 0.7, p2 = 0.2,n = 20, we get y ~ 8.78, so the maximum likelihood detector declares a detection if

Y

9 or more pulses are detected. Hence, DM (y) = {y 8 78}, which is a simple detector to implement.

We can now compute the probabilities of missed detection and false alarm as sums, as

Pup =P{Y <y "} Hi] = Z (Z) (p1)Y(1 —p1)" Y.

y<y*
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* n n—
Pra=P{Y >y'}Ho = 3 ( )(Po)y(lpo) v,
Y
Yy>y*
For the values p1 = 0.7,p2 = 0.2,n = 20, we get Pap] = 0.005, Pra = 0.010, which shows that, even though single
pulse detection is not very accurate, by sending 20 pulses we increase our performance to near-perfect detection.

For continuous observations Y, the maximum likelihood rule is expressed in terms of the likelihood

ratio using the conditional probability densities fy|u, (¥), fy|m,(y). In this case, L(y) = %, and the
0
Hy

PY\Hl(y) >

s-=1= = 1}. For continuous random variables
Pyia,(v) = ’
o Hy

maximum likelihood decision rule is given as DME(y) = {

enumerating the likelihood values for each y is no longer possible; to find the regions A; = {y € Ry :
DML(y) =1} and Ag = {y € Ry : DML (y) = 0}, we use the log-likelihood ratio to solve for the region.

Example 6.7

You are interested in diagnosing whether a person has a fever associated with a particular disease based on measuring
their temperature. If the person does not have a disease, the measured temperature is expected to be a Gaussian random
variable with mean 98.1 degrees Fahrenheit and standard deviation 1 degree Fahrenheit. If the person has the disease,
the average temperature is 101 degrees Fahrenheit and standard deviation 1 degree Fahrenheit. What is the maximum
likelihood detector? For the maximum likelihood detector, what are the probabilities of missed detection and false alarm?

Let H; be the event where the person has the disease, and Hy the event where the person does not have the disease. The
maximum likelihood detector is readily written in terms of the likelihood ratio as:

_ (y—101)?

1
——e 2 H
ML ) Vor <
D (y){1 P=TE: 501.}

Ven

To evaluate the performance, we use the log-likelihood ratio, which is

(y—101)2
ez y—101)2  (y—98.1)2
nL(y) = In ( — ) - S L )
e 2

2 2
1012 12 101 — 98.1)(101 1
= (101 — 98.1)y — 0 +98 = (101 — 98.1)y — (101 — 98.1)(101 + 98 ).
2 2 2
Equating this to 0, we get that y* = w = 99.55, the average of the f f
two expected values. If y > y*, then DML (y) = 1, and if y < y*, DML =0, Y|Ho (y) Y |H; (y)

the value of y*. To the right of that blue line, we have fy u, (y) > fyv|a, (y)-
To the left, the inequality is reversed. We can now compute the performance as
follows:

This is illustrated in the figure on the right, where the vertical blue line shows k </

Ppa =P[{y > 99.55}|Ho] = 1 — ®(1.45) = Q(1.45).

where the threshold y* = 99.55 is 1.45 standard deviations higher than the —
average 98.1. Similarly,

Pyp =P{y > 99.55}| H1] = ®(—1.45) = Q(1.45). Figure 6.6: Example 6.7.

6.3 Maximum A Posteriori (MAP) Detection

In maximum likelihood detection, we designed the detection rule independent of the prior probabilities of
each event hypothesis, P[Hy] and P[H;]. However, in many cases, the probabilities P[Hy] and P[H;] can be
very different. For instance, when testing for the presence of measles in a college-age student, the probability
that the observed symptoms actually come from measles is small, as most college-age students have received
an immunization vaccine. In this section, we show how to design detection algorithms that integrate this
type of information.
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Assume the measurements Y are discrete-valued, and we know P[Ho], P[H1]. We refer to P[Hy|, P[H]
as the prior probabilities, as they are known before measuring Y. After measuring Y, we compute the a
posteriori or conditional probabilities of Hy and H; given Y = y using Bayes’ Rule, as

P[Ho N{Y =y}] _ PRY = y}[Ho|P[Ho] _ Pym,(y)P[Ho]
PHY =y} PHY =y} PHY =y}]
where the denominator is computed using the Law of Total Probability, as
PRY = y}] = PRY = y}[HoP[Ho] + P{Y = y}|H\|P[H1] = Py n, (y)P[Ho| + Pym, (y)P[H1].
Similarly,

PIHo{Y = y}] =

PRY = y}HWP[Hy] _ Pyym, (y)P[H)]
PHY = y}] PHY = y}]

PIHY = y}] =

The maximum a posteriori (MAP) decision rule is defined as follows:

pMAP () {1, PH,|{Y = y}] > PH[{Y =y}],

0, PHoKY =y} > PIH[{Y = y}].

where we arbitrarily assign ties to 1. Since the denominator in Bayes’ Rule is the same for P[H;|{Y = y}]
and P[Hy|{Y = y}], this rule is the same as

phAR () {1, Py, (y)B[H1] = Py, (4)P[Ho,

0, Pyiu,(y)P[Hol] > Py|m, (yv)P[H1].

This allows us to rewrite the MAP decision rule in terms of the likelihood ratio, as

DMAP () = {C(y) _ Pmy (v) %1 P[Hy] }

Note that the data-dependent computation in the MAP decision rule is to compute the likelihood ratio,
just as in the ML decision rule. What changes is the threshold that one compares the maximum likelihood
to. In the ML case, the threshold is 1. This is also true in the MAP case if P[Hy] = P[H;]. However, if
P[H;] > P[Hy], the threshold is lower than 1, and the number of y for which the decision equals 1 is possibly
increased. If P[Hp] is larger, then the threshold is larger than 1, and the number of y for which the decision
equals 1 may be decreased.

Example 6.8

Assume we have the same problem as Example 6.5, but the prior probability that the coin is biased is only P[H:] = 0.4,
so P[Ho] = 0.6 because Hy, H1 form a partition of 2. From Example 6.5, we know the likelihoods of Y, the number of
heads observed in 6 trials, are shown in the table below.

Y. [ o 1 2 3 4 5 |
Py, || 0.01024 | 0.0768 | 0.2304 [ 0.3456 [ 0.2592 [ 0.07776
Py, || 0.03125 | 0.15625 | 0.3125 | 0.3125 | 0.15625 | 0.03125
L(y) [ 03277 | 049015 [0.7373 | 1.1059 | 1.6589 | 2.4883

We have added to the table a row computing the likelihood ratio for each value of Y. The threshold in the MAP decision
rule is ﬁgﬂ = 1.5. The values of Y = y for which the likelihood ratio exceeds the threshold are highlighted in bold
magenta above. We see that increasing the threshold has decreased the number of y for which the MAP decision is 1.

The MAP decision rule and the ML decision rule from Example 6.5 are shown below:

To compute the maximum likelihood decision, we compare the numbers in each column, and pick the larger of the two
numbers. In the table above, we have highlighted the larger number in bold and magenta color. Thus we see that the
maximum likelihood decision rule becomes:

y 1, =4,5, 1, = 3,4,5,
D]\IAP(y) _ Y DML(y) _ Y
0, y=0,1,2,3. 0, y=0,1,2.
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The decision agrees with intuition: a larger count of heads suggests the coin is more likely to be unbalanced, whereas a
smaller count of heads indicates the coin is more likely to be balanced.

Since the ML and MAP decision rules are different, they have different performance. The probability of false alarm for the
MAP decision rule is
PHMAY = P{Y = 4,5}|Ho] = Py, (4) + Py m,(4) = 0.1875.
The probability of missed detection for the MAP decision rule is
PyAT =P{Y =0,1,2,3}Hi] = Py, (0) + Py s, (1) + Py, (2) + Py, (3) = 0.633.
ML _ ML

In contrast, for the ML decision rule, P4 0.5, Py;p = 0.3174. Thus, increasing the threshold reduced the probability
of false alarm, and increased the probability of missed detection. The probability of error for each of the detectors is

PMAY — PIH PYT + P[H) | Paip” = 0.6-0.1875 + 0.4 - 0.633 ~ 0.3777.
PME — P[Ho| P + P[H | Pa{s = 0.6- 0.5+ 0.4 - 0.3174 ~ 0.4270.

We will show later that the MAP decision rule achieves the minimum probability of error among all possible decision rules.

The MAP decision rule for continuous-valued measurements Y is a straightforward extension of the MAP
decision rule for discrete-valued measurements Y. We have to be a bit careful to define P[Hy|{Y = y}] and
P[H,|{Y = y}] using a limiting argument, as in Chapter 4.4.3, because P[{Y = y}| = 0. Specifically,

PlHo N {Y € (yy + Al}] _ PHY € (y,y + AJ}Ho|P[Ho]
PH{Y € (y,y + A)}] PHY € (y.y + A)}]
(Fym,(y + A) = Fym, (y))P[Ho]
Fy(y+ A) — Fy(y)

As A — 0, both numerator and denominator approach 0. We use L’Hopital’s rule to evaluate the limit, as

PIH{Y € (y,y + Al}] =

. . = (EY\HO (y+A) - I‘Y\Ho (y))P[Ho fY|HO (y)P[Ho]
im 94 — = = .
hmOP[HoHY € (y,y+ A} = lmo dd (Fy (y ) ) v () P[Ho|Y = y]
Sy m, (y)PH1]

Similarly, P[H1|Y = y] = , and the marginal density is obtained by the Law of Total Probability

as

fr(y)

Iy (W) = fyim, W)P[Ho] + fya, (y)P[Hi].
This leads to the MAP decision rule in terms of the likelihood ratio

MAP, N _ fyym, (y) H2 P[Ho)
o= {E(y) " T v) i B }

Example 6.9

The delay Y in arrival of an on-line order is modeled as an exponential random variable, but the rate of that random
variable iis one of two possible rates. Under hypothesis Hi, the rate is 0.2/day, and under hypothesis Hp, the rate is
0.1/day. The prior probability that hypothesis Hy is correct is P[Ho] = 0.6. Assume we observe Y = y. What is the MAP
decision rule, and what is its probability of error?

P[Ho] 3

= =. The likelihood ratio for the

The threshold for the MAP decision rule for the probability of error is T = i 5

exponential random variables is

0.2e7 %%
T 0.1e 0y
which is decreasing as y increases. Thus, longer observed delays y make hypothesis Hy more likely, as its rate of arrival is
smaller.

—0.1
=2 Y,

L(y)

The boundary for the decision region in terms of y can be found by solving £(y) = 2¢™%¥ = % Taking logarithms,
—0.1y = In(3) — In(4) = y = 10(In(4) — In(3)) ~ 2.877.

Thus, if y < 2.877, select DMAP (y) = 1; else, select DM4F () = 0. With these regions, we have

2.877
Pra = / Py, (W) dy = Fy 5, (2.877) = 1 — e %% = 0.25,
0
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Pyp = / fyia, (y) dy = e 02T % = 0.5625.
2.877

The probability of error is

P. = P[Ho|Pra + P[H1|Pap = 0.6 % 0.25 + 0.4 % 0.5625 = 0.375.

We conclude this section by showing that the MAP decision rule minimizes the probability of error
among all decision rules. For any decision rule D(y), the probability of error conditioned on Y = y is given
as follows: Since Hy, H; are a partition of €2,

P[Error|Y = y] = P[Error N H1|Y = y] + P[Error N HylY = y].

P[Error N H1|Y = y] = P[Error|Y =y, H1|P[H1|Y = y];
P[Error N Ho|Y = y] = P[Error|Y =y, Ho|P[Ho|Y = y],

which follows from the definition of conditional probability. Note that P[Error|Y" =y, Ho] = Ip(,)—1, where
I, is the indicator function that is 1 if A is true, and 0 elsewhere. Similarly, P[Error|Y" =y, H1] = Ip(y)=o-
Therefore,

P[Error|Y = y| = Ipy=1P[Ho|Y = y] + Ipy=oP[H1]Y = y].

Note that DMAP(y) selects the smallest of the two terms for each Y = y, and hence has the smallest
probability of error for each Y = y. The unconditional probability of error is, assuming Y is discrete, as
Po= > <ID(y)—1]P’[Ho|Y =yl + Ipy)=oP[H1]Y = y]>PY(y),
YERy

which DMAP () will minimize because it minimizes each term in the sum.

For continuous Y, we get

Fe= / <ID(W_1P[HO|Y = I+ Ipg)=oP[Fh Y = y]>fy(y) dy,
YERy

which is minimized by DMAP (y) because DMAP(3) minimizes the integrand for every value of y, and hence
it minimizes the integral.

6.4 Minimum Bayes Risk Detection

In many important situations, there is a different cost associated with the different types of errors. For
instance, in luggage inspection, a false alarm can result in an unnecessary opening of a suitcase to check
its contents. However, a missed detection can result in an explosive entering the airplane. In breast cancer
diagnosis, a false alarm can lead to an unneeded biopsy, whereas a missed detection can be life-threatening.

To properly evaluate this tradeoff, we assign different costs to the dif- Truth
ferent types of errors, and design a decision rule to minimize the total Ho 1
expected cost. Formally, let C;; denote the cost of deciding U; when cU=0l Coo Cot
Hj is true. We typically select C11 = 0,Cyo = 0, so that correct de- _g

cisions involve no cost; while this is not essential, it is wasted space S

to consider the full generality, as it is never used in practice. The key au=1| Cq Ci
tradeoff is the relative cost of a missed detection Cp; and a false alarm

C19. The Figure on the right illustrates the indexing as to what the

Figure 6.7: Bayes’ Costs.
costs mean for different values of decision and true hypothesis. & Y

We follow closely the development in the previous section where we showed the MAP decision rule
minimized P,, the probability of making an error. For an arbitrary decision rule D(y), let R denote the cost
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of the decision rule. R is a random variable defined on the experiment, which depends on the outcome s
and the observation y, as R(s,y) = COll{weHl}ﬂ{D(y(w)):O} +010[{w6H0}ﬁ{D(y(w)):l}- Then, the conditional
probability mass function of R given Y =y and D(y) =0 is

PIH,|Y =y], r=Cn
PHolY =y], r=0.

P[H0|Y = y], T = 010

P _ =
R\Y,{D_o}(r\l/) { P[H,|Y =y], r=0.

Priy,ip=13(rly) = {
Then,

E[R)Y = y] = CnP[H:1|Y = y|Ip(y)=0 + C10P[Ho|Y = y]Ip(y)=1-
The decision that minimizes this conditional expected risk given measurement ¥ = y is

DMBE(y) — 1, CoPH\|Y =y] > CioP[H|Y =y]
0, C()ﬂP’[HllY = y] < Cl()P[Ho‘Y = y}

For discrete random variables Y, the expected risk for any decision D(y) is written as:
E[R] = ) E[R|Y =y]Py(y).
YyERy

Since the minimum Bayes risk (MBR) minimizes each term of the sum among all decision rules, it is the
optimal decision rule for minimizing the expected Bayes risk. For continuous random variables Y, the
expected Bayes risk of any decision rule is

E[R] = / E[RY = y]fy (4) dy.
YyERy

The MBR decision rule DM 5% (y) minimizes the integrand for each y, and hence minimizes the expectation.

We can write DMBE in terms of the likelihood ratio £(y) using Bayes’ Rule: for discrete Y,

Bty = y) = BRI gy ) - P

Recall that <= means “if and only if”; then,
CoiP[H1|Y = y] > CroP[HolY =y| <= Co1Py|u, (y)P[H1] > CioPy|u, (y)P[Ho]

Py, (y) S C1oP[Ho
Py, (y) — CorP[H1]

Thus, the minimum Bayes risk decision rule is

vBr, Py (y) 2 CioP[Ho]
DU = {5 7 CoElin )

For continuous measurements Y = y, the minimum Bayes risk decision rule is

mBRr, [ fyim (y) B CyoP[Ho)
b W)= {leHo(y) I?o Co1P[Hy] }

Note the following: The MAP decision rule is a special case of the MBR. decision rule when Cyy = Cp;.
The ML decision rule is another case of the MBR, decision rule when Cyg = Cyy, P[H1] = P[Hp]. In general,
all MBR decision rules are based on comparing the likelihood ratio value for Y = y to a threshold, where
the threshold is computed from the relative costs and the prior probabilities of Hy, H.

The threshold varies with the relative cost of false alarms and missed detections in an intuitive manner.
If missed detection are more expensive than false alarms, then the threshold for the likelihood ratio is set
lower, so that one is more likely to decide that H; is the correct hypothesis.
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Example 6.10

Consider Example 6.7, which sought to diagnose the presence of a disease by measuring the temperature. Assume a priori
that the probability of having the disease (P[H1]) is 0.4, and thus the probability of not having the disease (P[Hy]) is 0.6.
However, the cost of a missed detection is 10 (Co1), whereas the cost of a false alarm (Cio) is 1. What is the minimum
Bayes risk decision rule, and what are the resulting probabilities of false alarm and missed detection?

The MBR decision rule is

H1 CioP 3
DYy {ﬁ m 0011?% } N 20}'
From the results of Example 6.7, the likelihood ratio is
_ (y—101)?
E(y) = e_(ri:g_l)z
e 2
Then,

L) < o += In(£L()) <In(3) ~In(20)

20
In (ﬁ(y)) — (101 - 98.1)y — 10L= 98.1)2(101 +98.1)

= 2.9y — (2.9) - (99.55)
DMER(y) = { 2 9955+ —9(1n(3) — In(20)) = 99.2159}.

Thus, we see that the threshold for the decision rule has been lowered as compared to the ML decision rule of Example 6.7.
This means that the probability of missed detection decreases, and the probability of false alarm increases. Since the mean
under Hy is 98.1, the threshold is 1.1159 standard deviations higher than the mean, so Pra = Q(1.1159). Since the mean
under Hy is 101, the threshold is 1.7841 standard deviations lower than the mean, so Pyp = ®(—1.7841) = Q(1.7841).

The minimum expected Bayes risk is given in terms of these measures, as
E[R] = P[Ho|C10Pra + P[H1]Co1 Prp = 0.6Pra + 4Pyp = 0.6Q(1.1159) + 4Q(1.841)

for the MBR decision rule, and
E[R] = 0.6Q(1.45) + 4Q(1.45)

for the ML decision rule, which is higher than the MBR expected Bayes risk.

6.5 Performance and the Receiver Operating Characteristic

In the discussion so far, we have found that the optimal decision rule for binary hypotheses is a likelihood
ratio test, where we compute a function of the measured data (the likelihood ratio) and compare it to a
threshold. The choice of threshold depends on the prior probabilities of each hypotheses, plus the costs of
making a missed detection. These four parameters are summarized in a single threshold T'; to design an
optimal decision rule, we simply select this threshold 7', and the decision rule is

H,
D(y) = {E(y) 2 T}-
Hy
The choice of threshold T controls the tradeoff between the conditional performance statistics Py;p and
Pr 4. As T increases, the decision rule selects Hp less often, which increases Py;p and decreases Pr 4.

Define the probability of detection Pp = 1 — Pyp. As the threshold T decreases to 0, the region of
measurements Y = y for which the decision is 1 increases, eventually becoming the entire range Ry. When
the threshold is 0, the performance statistics are Pp = 1, Pp4 = 1, since the decision is always 1. Similarly,
as the threshold increases to oo, the region of measurements Y = y for which the decision is 1 decreases,
eventually becoming empty. For a threshold of co, the performance statistics are Pp = 0, Pra = 0. As the
threshold T is varied from 0 to oo, we can trace a locus of performance of Pp(T) versus Ppa(T), which
is called the Receiver Operating Characteristic or ROC for the detection problem. The design of an
optimal decision rule based on likelihood ratios reduces to selecting a point on the ROC that trades off Pp
versus Pry4. An illustration of a ROC is given in Figure 6.8.



6.5. PERFORMANCE AND THE RECEIVER OPERATING CHARACTERISTIC 153

ufY|Ho (y) fY|H1 (y) |

P
- P D \(\c}"’%
/ Pra
rmo Y 0p Pra

Densities indicating decision regions Receiver Operating Characteristic (ROC)

Figure 6.8: Illustration of ROC for detection involving two Gaussian Distributions.

Let us emphasize some features of the ROC. First, note that the threshold T' is a parameter along the
curve. Thus any one point on the ROC corresponds to a particular choice of threshold (and vice versa). The
ROC itself does not depend on the costs C;; or the apriori probabilities P[H;]. These terms can be used to
determine a particular threshold, and thus a particular operating point corresponding to the optimal Bayes
risk detector. A couple of important properties of the ROC are:

e The ROC is monotone non-decreasing. Increasing Pr4 results in increasing Pp.

e The ROC is a concave curve, with the graph above the Pp = Ppry4 line. Performance on the line
Pp = Pr 4 correspond to detectors that that randomly guess D(y) = 1 with probability p, independent
of the measured value y. The optimal detectors achieve better performance by using the information
in y. This argument can be extended to show the ROC is a concave curve.

Determining the ROC requires computing the region A;(7T) = {y € Ry : L(y) > T’} where the likelihood
ratio decision rule results in decision 1 for threshold T. If we know that region, then Pp(T) = P[{y €
A1(T)}Hy], Pra(T) = P[{y € A1(T)}|Ho]. By varying T, we obtain the points on the ROC. We discuss
examples to show how this is done.

Example 6.11

We have a coin that may be biased so that the probability of Heads is 0.8 (Hypothesis H;.) If the coin is unbiased, the
probability of Heads is 0.5 (Hypothesis Hy.) We conduct three independent flips and count the number of heads as our
measurement Y. The likelihoods and the likelihood ratio are shown in the table below:

[ ¥v: [ o | 1t [ 2 | 3 |
Py s, || 0.0080 | 0.0960 | 0.3840 | 0.5120
Py|n, || 0.1250 | 0.3750 | 0.3750 | 0.1250
L(y) | 0-0640 | 0.2560 | 1.0240 | 4.0960
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We see that, for thresholds T" above 4.1, the decision is always D(y) = 0, and
so Pp = 0,Pra = 0. For thresholds around 7' = 1.1, D(y) = 1 if y = 3, and
0 otherwise. Thus, Pp = 0.5120, Pr4 = 0.1250. As we lower the threshold
to between 0.26 and 1.02, D(y) = 1 for y = 2,3 and 0 for y = 0,1. Then,
Pp =0.896, Pra = 0.5. We continue this and obtain the various points, plotted
on the ROC figure on the right.

Probability of Detection

Note that we have connected the discrete points in the ROC with straight lines.
One can achieve performance on those straight lines by randomly switching be-
tween the thresholds corresponding to the two endpoints on the line. That type
of random decision rule can be used to achieve a desired Pra that is different
from the finite ones obtained by the discrete breakpoints in the likelihood ratio
table above.

03 04 05 06 07
Prob. False Alarm

Figure 6.9: ROC for example.

Example 6.12

We have a light source that can either have an intensity of 100 photons/second, or 200 photons/second. We measure the
number of photons emitted over a 1 second period, and have to decide which is the correct intensity for the light source.
Let H; correspond to intensity of 120 photons/second, and Hy correspond to intensity of 100 photons/second. If H; is
correct, the number of photons measured is a Poisson(120) random variable; if Hy is correct, the number is a Poisson(100)
random variable.

The likelihood ratio for this problem is

120Y ,—120 o

L(y) = i:igzg = ui#e_wo — (1.2)%

i

An optimal likelihood ratio test is {L‘,(y) 50 T ¢ for a threshold T'. Taking g

logarithms, of both sides, this reduces to o
In(T) + 20 T A

In (£ =yln(1.2) —20>In(T) <= y > .
n (L) =yin(12) n(T) Y In1.2 Figure 6.10: ROC for example.

H
For instance, for the ML decision rule, T = 1, and so the ML decision rule is {y 21 109.7}. The ROC is
Hy
shown in Figure 6.10 , where we have connected the discrete points in the ROC with straight lines.
Example 6.13 (Scalar Gaussian Detection)

Consider again the problem of determining which of two Gaussian densities of scalar observation comes from. In particular,
suppose ¥ is scalar and distributed N(0,5%) under Hy and distributed N (m,o?) under Hy. The likelihood ratio is

1 _ (y*7'21)2
e 2 w=-m)?  ?
2o — —+
£(y) = 7@)2 = e 202 202
1 T 202

and the log-likelihood ratio is
1 2
In (E(y)) = @(me —m”).
Hence, comparing the log-likelihood ratio to the log of a threshold T yields the decision rule

H In(T
rm " In(T) _
H02 m

From this, we can use the Gaussian likelihood formulas to obtain Pp and Pra as:

Pp =1—&( ) = Q( ); Pra=1-3(

g g

I'—m I'—-m I
o

These calculations of Pp and Pr are illustrated in Figure 6.11.



6.5. PERFORMANCE AND THE RECEIVER OPERATING CHARACTERISTIC 155
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R
[562
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m

Declare H, Declare H,

Figure 6.11: Illustration of Pp and Pg4 calculation.

Example 6.14 (Gaussian detection with different variances)
Suppose y is scalar and distributed N(0,07) under Hy and distributed N(0,03) under H;. Assume o1 < oo. Thus, the
Gaussians have the same mean, but different variances.

(y)j
1 20 2 2
1 Y Y
VZnoL C 01 ~3,7 73,2
Ly)= "L —— = —¢ 29 0.
()2
a2 g0
2470

The log-likelihood ratio is

y? 1 1

In(L(y)) = 75(0—% — U—g) + In(o1) — In(oo).

Hence, comparing the log-likelihood ratio to the log of a threshold T yields the decision rule
0 oiog

—y* 2 %0 (n(o0) — In(o1) + (7)) =T.

Ho 0p — 01

Note we were careful in dividing by numbers that are positive, so the sign of the inequalities was preserved. Unlike the case
where the means were different, the detector is quadratic in the measurement. Since the density of Y under Hy has larger
variance, higher magnitudes of the measured y provide more support for hypothesis Hy. We can simplify the decision rule:
In terms of y, we select Hy if |y| < ﬁ, otherwise, we select Hy. From this, we can use the Gaussian likelihood formulas
to obtain Pp and Pr4 as:

Po = BI{|Y < VI}|H] = #(Y0) —a(-YE)
Pea = PI(Y| < VEY ] = o(T) - a(- Y1)

The ROC can now be obtained by varying T from 0 to co. The ROC is shown in Figure 6.12.

Prob. Detection
o
o

0 0.2 0.4 0.6 0.8 1
Pro. False Alarm

Figure 6.12: ROC for Gaussian hypotheses with different varlances.
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6.6 Binary Hypothesis Testing with Vector Observations

The previous sections have assumed that the measurement Y is a scalar measurement, either discrete-
valued or continuous valued. The previous theories developed extend completely to the case of pairs of
measurements X,Y, or vector-valued measurements Y. We briefly overview these extensions for pairs of
measurements X, Y.

As before, we assume that the two hypotheses Hy, H; are events in £ that form a partition of the sample
space §2. We assume that we observe a pair of random variables X,Y. If XY are discrete random variables,
we assume that we are given the conditional joint probability mass functions Px y g, (z,y) and Px y|#, (7, y).
With this information, the likelihood ratio can be defined as a function of values (z,y) € Rx y by

Px yu, (z,y)
Lx,y) = ————F=.
(@) Px ym,(z,y)

For jointly continuous measurements, the likelihoods are given by the conditional joint probability density
functions fx y|m,(z,y) and fx y|m, (z,y). The likelihood ratio is defined as

. fX,Y|H1 (a;,y)
Lla,y) = fX,Y|H0($aZ/).

Once we have the likelihood ratios, the ML, MAP and MBR detectors are defined in identical manner to
the scalar case:

DViGa.y) = { L) 2 1},

 P[Hy] }

DM ) = {£(0) 2 s

Hy Clo]P[Ho]

DME(g y) = {L‘ T,y) 2 7}
) =\ E0Y) 2 Bl

What is unique about the vector case is that the optimal decision rule depends only on a scalar function

of the vector of observations X, Y. This holds true for higher-dimensional vectors: there is always a scalar

function of the measurement vector Y that serves as a sufficient statistic to make an optimal decision.

The hard part of detection with vector observations is finding the decision regions so that we can compute
performance metrics such as the probability of false alarm or the probability of missed detection. For pairs of
random variables, we need to find the regions {(z,y) € Rx,y : D(z,y) = 0} and {(x,y) € Rxy : D(z,y) =
1}. For scalar measurements, we did this by analyzing the likelihood ratio test, and simplifying the equations
to identify the regions. This is significantly harder for vector measurements, but there are special cases where
we can do this.

We illustrate these extensions to vector observations with examples below.

Example 6.15

We are going to extend the diagnosis problem discussed in Example 6.7. The patient believes he has the flu. The hypothesis
H, is the patient has the flu versus Hy that the patient only has a cold. Let X be the measured temperature, and let Y
be the results of a rapid influenza diagnostic test (RIDT) done on a mucus sample. We model the likelihood of X as a
conditional Gaussian random variable with mean 98 degrees and standard deviation 2 degrees under Hy, and mean 102
degrees with standard deviation 2 degrees under H;. The RIDT test is a color test, so we model the likelihood of Y in a
very simple manner as a conditional Gaussian random variable (in the visible color spectrum) with mean wavelength 500
nm and standard deviation 100 nm under Hy, and mean wavelength 650 nm and standard deviation 100 nm under H;.
We assume that X,Y are conditionally independent given Hy, and also conditionally independent under H;.

With the above information, we can now write the conditional joint probability density of (X,Y") given Ho and H; as

1 _ (z—98)? 1 _ (y=500)2
8

Ll’, = e —_—e 20000
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f ( ) 1 _ (z—102)2 1 _ (y—650)2
T -~ ¢ ] __~ ¢ 20000
XYY = o 100v27

The likelihood ratio is:

T
L(z,y) = Ix,vim (2,9)

Ix,v i, (2, Y)

1 _ (z—102)2 1
2\/56 ° 100\/56

1 _(z=98)2 1 _

e e

2v/2m 100V27

(17102)2_‘_(1798)2 (y—650)2 | (y—500)2
- 8 8 e~ 20000 + 55000

_ (y—650)2
20000

(y—500)2
20000

=e
Taking logarithms yields the log-likelihood ratio:

g (E(Jay)) __(@=102°  (2-98)° (y—650)° , (y—500)°

3 8 20000 20000
(102 — 98)(2z — 200) | 150(2y — 1150)
h 8 20000
:x_4-200+iy_ﬁ
8 200 8
g 3, 869
200 8

The maximum likelihood detector compares the log-likelihood ratio to the threshold 0. This test becomes:

3 Hi 869
pML _ 3 51869
() {x *200Y 5 8

The decision rule reduces to comparing a scalar statistic x + %y to a threshold. This defines a region in z-y space where
the decision is 0, and another region where the decision is 1, separated by the line z + 53;y = 252, With this definition of

decision regions, we can now do compute Pra and Py p as two-dimensionl integrals.

In this case, there is a simpler method for computing performance. Define the statistic Z = X + %Y as a linear
combination of X,Y. Z is a sufficient statistic for this problem, because the max-likelihood detector depends only on

Z: DME(a,y) = { 2 soo )
: yY) = Z; 3 .

0

Since X,Y are jointly Gaussian conditioned on Hp, Z is a Gaussian random variable conditioned on Hy. Its conditional
mean is E[Z|Ho] = E[X|Ho] + 555 E[Y|Ho] = 98 + 7.5 = 105.5. Since X and Y are conditionally independent given H,
we get

40000

Similarly, Z is Gaussian conditioned on Hy with E[Z|H,] = 102 4 525650 = 111.75, and Var[Z|H1] = 6.25. We write the
ML detector in terms of Z as

2
Var[Z| Ho] = Var[X|Ho] + (%}) Var[Y|Ho] = 4 + ——10000 = 6.25.

H
DME(z) = {z > 108.625).

Ho

and now we can analyze its performance the same way we did for a scalar Gaussian random variable decision rule. Thus,

111.75 — 105.5)

108.625 — 105.5
Pra= Q( ) V6.25

m 5 PMD:Q(

Example 6.16

Consider the radar detection example, where N independent pulses are sent out. However, instead of making a detection
on each pulse return and counting the number of detections, we measure the signal strength of each return, so that a
vector of signal strength measurements is collected. We assume that each pulse provides a measurement Y;, where

v — Wi if hypothesis Hy is true (no target present)
’ E + W; if hypothesis H; is true (target present).

where F is a known constant, W;,i =1,..., N are independent, zero-mean Gaussian random variables with variance o2.
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The above model results in a vector of observations Y, where the components Y; are jointly Gaussian and independent.
Under hypothesis H1, each Y; has mean E and variance 02, whereas under hypothesis Ho, each Y; has mean 0 and variance
o2. In this case, the likelihood ratio is given by

N
2
N —(y;—E)? N QE(Zyi) — NFE
fX\H1 (v) e 202 2By;—E P}
E = — :H )2 :He 2052 —e 552
J. fY\Ho (y) e 21;12 pelet

Taking logs of both sides the decision rule can be reduced to:

= E o? " In(T)
N Zyl 2t NE

where T is the threshold used in the likelihood ratio test (e.g. 1 for the maximum likelihood detector.) In this case, note
that a scalar sufficient statistic is Z = % Zf\;l Y;, which is a linear combination of Y and hence Gaussian conditioned on
Hy and on Hy. The mean of Z under H; is

N N
1 1
E[Z|H)] = E[§ |H1 =5 E.:lE[YAHl =5 Zl E=E.

Similarly, the mean of Z under Hj is 0. The variance of Z under both H; and Hj is

2
g

N N 2

Y; o
Var Z|H1 Var[ E |H1 E Var[—|H1] = E ~3 =
i=1 N i=1 N N

because the Y; components are independent (and thus uncorrelated), so the variance of the sum is the sum of the variances
of the individual components.

Thus, the effect of using N measurements is equivalent to using one measurement with variance reduced by a factor of
1/N, thereby increasing the effective signal-to-noise ratio in the detector. Denote by I' = % + % as the threshold
used in the log-likelihood ratio test for Z. We can now compute the performance statistics as a function of this threshold
using the Gaussian properties of Z, as

N2

Prpa =P[Z > T|Ho] = Q(——).

(E-T)Nz

Pyvbp :P[Z<F‘H1]=Q( p

).

The effect of increasing N is to get a more accurate measurement. This means the performance of the detector, as
captured in the ROC curve, improves. As N — oo, both Pra and Py p decrease to zero. The ROC for different values
of N is illustrated in Figure 6.13.

6.7 M-ary Hypothesis Testing

The exposition so far has focused on binary hypothesis testing problems. When there are M possibilities or
hypotheses, we term the problem an M-ary detection or hypothesis testing problem. We have M events in
(Q,&,P), denoted as H;,i =0,..., M — 1, which are mutually exclusive and collectively exhaustive, so they
form a partition of 2. We assume there are measurements Y which are random vectors that provide the
information for detection. If Y is discrete-valued, we are provided the conditional probability mass functions
Pyg,(y) fori=0,1,...,M — 1. If Y is a jointly continuous random vector, we are provided the conditional
probability density functlons fym,(y) fori=0,1,..., M — 1.

A decision rule D(y) is. function that maps each observed value y into {0,1,..., M — 1} where decision
k means that hypothesis Hj, is the selected hypothesis. The concepts for designing decision rules that we
presented previously for binary hypothesis testing extend naturally to this case. For the maximum likelihood
decision rule, we want to select D(y) = k whenever

Py\u, (y) > Py, (y), for all j #i( y discrete).
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Increasing N

R

Figure 6.13: Illustration ROC behavior as we obtain more independent observations.

fy1m,(y) = fyym, (y), for all j # i( y continuous).

For the maximum a posteriori decision rule, we want to select D(y) = k whenever

PH,|Y = y] > PH,[Y = y], for all j #.

Equivalently, select D(y) = k whenever
Py p, (y)P[Hy] > Py\n, (y)P[H;], for all j # i( y discrete).

Sy, (W)PH] > fy|a, (y)P[H;], for all j # i( y continuous).

As before, the MAP decision rule will minimize the average probability of error. If we defined costs Cj;
associated with the cost of selecting decision U; when hypothesis Hj is true, we can also define an equivalent
theory for the minimum Bayes risk decision rule as in the binary hypothesis testing problems.

The biggest difference in the m-ary detection case is that there is no longer a sufficient scalar statistic
like the likelihood ratio that we can compare to a threshold for optimal decision rules. Instead, the optimal
decision rules must compute the M likelihoods, scale them appropriately, and pick the best decision on the
basis of the resulting scaled values.

We illustrate m-ary detection problems with a couple of examples.

Example 6.17

Consider a communications problem where we try to communicate two bits at a time. We denote our two bits as pairs
A,B € {—1,1}. We have four basic signals we are sending (1,1), (-1,1),(-1,-1),(1,-1), corresponding to hypotheses
Ho, H1, Ha, H3 correspond to the transmitted symbols in this order.

To send the symbols, we use a variation of quadrature amplitude modulation, using short pulses of the form s(t) =
Acos(wt) + Bsin(wt), t € [0,T]. A typical QAM modulation scheme is show in Figure 6.14, where the input I is the
in-phase component, corresponding to the symbol A, and the input @ is the quadrature component, corresponding to the
symbol B. The resulting transmitted pulse is s(t) = A cos(wt) + Bsin(wt),t € [0, 7]

The signals propagate through the environment to a receiver, that demodulates the signal using a quadrature demodulation
scheme, as shown in Figure 6.14. In the demodulator, the received signal is split, and multiplied each by cos(wt) and
sin(wt). The in-phase output of the demodulator, I(t), corresponds to the signal s(t) cos(wt), and the quadrature output
Q(t) corresponds to the signal s(t) sin(wt).

Note that I(t) = Acos?(wt) 4+ B cos(wt) sin(wt). Thus, averaging I(t) over an interval of a few periods yields the output
A/2, as the second term averages to 0. Similarly, Q(t) = A cos(wt) sin(wt) 4 B sin?(wt), which averages to B/2. This
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Figure 6.14: Figures for Example 77.

averaging is a low-pass filter and generates measurements of the transmitted A, B bits. Of course, these measurements
are corrupted by background noise in the detector, signal corruption in the transmission channel, and small phase errors in
the oscillators between the modulator and the demodulator.

The mathematical model of this detection problem is as follows: we measure two continuous random variables (X,Y),
corresponding to the averages of the I and @ outputs of the demodulator. We model the statistics of these random
variables as follows: We assume that X, Y are conditionally independent and Gaussian given any of the four hypotheses
H;,i=0,1,2,3. Furthermore, under each hypothesis, the variance of X is ¢, and the variance of Y is also 0. However,
the means change between hypotheses:

e Under Hy, E[X|Ho] =m{ = 1,E[Y|Ho] =my = 1.

e Under Hy, E[X|H\] = m} = —1,E[Y|H,] = m) = 1.
o Under Hy, E[X|Hz] = m2 = —1,E[Y |Hy] = m? = —1.
e Under Hs, E[X|Hs] = m} = 1,E[Y|Hs] =m) = —1.

The signals are illustrated in Figure 6.14.

2em )2 (y—may)2
The likelihood under H; is thus fx vy m, (z,y) = 27302 e_( m>2:(y = . To pick the largest one, we can compare the
logarithms of the likelihoods, and subtract a common constant from all of them, to get a different comparison function
c'(z,y) as

Ly emmi) et om)’
2mo? 202 '

We can scale ¢(, %) and subtract the same term to all 4, to get

Ci(ff: y) =In (fX,Y\Hi (3672/)) —1In (

i i mi)? + (m¥)? i i
d(ﬁvy):2026(x,y)+ %=mﬂ+myy*1-

v 8,

v :
+?:m;x+m;y7

Every transformation we did above preserved the order of the likelihoods fx y|m,(x,¥). Hence, the maximum likelihood
decision is

DME(z,y) = Uix, where i* € arg _Inax 3m;m +myy — L.
Note the -1 is not important. Then, we decide 0 when: z+y >z —y;2+y > —x —y;z +y > —z + y. Combine these

inequalities, we get the region z > 0,y > 0. Thus, we decide 0 if we measure x,y in the first quadrant. Similarly, we
decide 1 if the measurement (z,y) is in < 0,y > 0, Us if the measurement is in z,y < 0, and Us if z > 0,y < 0.

We've simplified the decision rule so we could identify the decision regions in terms of the regions of the measurement

range Rx,y. We can use this to analyze the performance. Note the following: we can compute P[DMZ(XY) = 0|Ho) =
P[X > 0,Y > 0|Ho] = P[X > 0|Ho|P[Y > 0|Ho] because of the conditional independence of X,Y. Thus,
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This is the probability that we don't make an error when Hj is the correct hypothesis. By symmetry, this is also
P[DM*(X,Y) = Ui|H;],i = 1,2,3. If all the hypotheses had equal prior probability P[H;], the expected probability
of correct decoding is ®(2)>.

Example 6.18

Suppose we want to detect which of three possible N-dimensional signals m”, k = 0, 1,2 is being received in the presence
of noise. Under hypothesis Hj the observation Y is given by the vector Gaussian density:

N
fyim, (y H

This means each of the components of the observation
conditional expectation given by the components of m*.

1/J—7n ky2

Y is conditionally independent, Gaussian, with variance 1 and

Assume that we want a minimum probability of error decision rule, namely the MAP decision rule. Let P, = P[Hy], the
prior probabilities. The MAP decision rule picks

(y]’—m/?)2
2

1
DMAP(y) = U+, where i* € arg min Py H ——e
= k=012 70 V2
We now have a valid decision rule, but the decision regions are hard to figure out, and this requires a lot of computation.
We simplify the decision rules by taking transformations that preserve the order: we first compute log-likelihoods, and
subtract common constants, to define

k 1 = (y; —mf)?
c In + In(P; NIn(—) = In(FPy) — —_
() =10 (zn 0) + 1(P0) = Nl ) = n(P) = 302
We can further simplify this by adding the same term to all the ck(g), as
&) +Zyﬂ In(Pe) + (m*)Ty — (") "
LAAY g 2 == ==

where we have used vector notation for transposes. The terms dk( ) are referred to as discriminant functions; in this case,
they are linear functions of y, which help establish the regions.

Thus, the decision 0 is made whenever

In(Po) + (m")"y — = (m°) ' m” > In(P1) + (m")"

<
I

<
I
N = N =

In(Po) + (m”) "y — %(mO)TmO > In(Py) + (m*)"
Combining the y terms on the left side of the first equation, we get:
(1 — ")y > n(P) — Wn(Po) + 5 () 'm” — (') ")
which defines a half-plane perpendicular to the line connecting m® and m!. Working with the second equation yields
(m°® —m*)Ty > In(P,) — In(Py) + %((mo)TmO — (m*)"'m?)

which is another half plane perpendicular to the line connecting m® and m?. The intersection of the two half-planes is the
region of y where we decide 0. A similar analysis can be done to determine the regions for 1 and Us.

It is worth noting that, if the prior probabilities are all equal to 1/3, then the half-plane separating m® and m! goes through

the midpoint of the line connecting m® and m!. This is because, setting y== ;f , we get
O\T 1. o7 o O\T, 1
(m7)"y — 5(m’) m’ = (m’) m
1
(m")'y—5(m") 'm' = (m°)"'m".

o \m
Thus, this value of y is on the boundary of the decision regions between 0, 1. The resulting decision regions are illustrated
in Figure 6.15 for a two-dimensional case. The decision boundaries are the bisectors of the lines connecting the means
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Figure 6.15: Illustration of the ML decision rule in the observation space.

under the different hypotheses. In general, this type of decision strategy is called a nearest neighbor classifier or a minimum
distance receiver in the literature. Given the decision regions, we can now calculate performances, albeit with complicated
integrals even in the case where we have conditionally independent measurements, because the decision regions are not
parallel to the y1,y2 axes.

As a final comment in this Chapter, techniques such as nearest neighbor classifiers and linear discrimi-
nants are used extensively in data science and machine learning without much theoretical justification. In
this Chapter, we have learned classes of statistical models for which nearest average classifiers and linear
discriminants lead to optimal decision rules. We will use this to understand the hidden assumptions behind
many classification methods in data science.



Chapter 7

Estimation

7.1 Introduction

In this chapter we consider the problem of estimating or inferring the values of unknown variables based
on observation of a related set of random variables. A simple model of the estimation situation we are
considering is depicted in Figure 7.1(a). An experiment generates pairs of random variables X,Y. We
observe one of the two random variables, Y. Based on the observed value Y = y, we want to estimate the
unobserved variable X by using an estimation rule Z(y). This model can be extended to cases where X, Y
are random vectors, so that several random variables are observed, and several unknown random variables
are to be estimated.

Unobserved

Sx

0 Unobserved

Sy
S P; T m
< Estimator —— X@ Y‘X(y‘ )U —

Sy )A((Y) (@) Estimator )?(Y)

Observed

Observed

(a) Jointly distributed random variables (b) Sequential experiment
Figure 7.1: Different Views of Estimation Problem.

Assuming XY are discrete random variables, the probabilistic description of the variables X,Y is
summarized by the joint probability mass function Px y (z,y), which we factor using the product rule as
Px(z)Py|x (y|z). The second term in this factorization is the likelihood function, which captures the statis-
tical relationship of how Y varies depending on the value of X. We can view this experiment as a sequential
experiment, where the unobserved variable X is generated first, with probability law Px (z). Depending on
the value of X, the observed variable Y is generated with probability law Py x (y|z). Figure 7.1(b) shows
this sequential model, which is the one that we use in discussing estimation problems in this chapter.

This model has two components:

1. A model of the experiment that generates the unobserved random variable X, described by either
Px(x) if X is discrete, or fx(z) if X is continuous.

2. A model of the observed random variable Y, represented by the conditional probability mass function
Py x (y|z), if Y is discrete, or the conditional probability density function fy|x(y|z) if y is continuous.

This model captures the essential elements of many problems in engineering and science, including: finding
the location of a target based on radar observations, estimating the heart rate of a patient from electrical
measurements, discerning O™ density in the atmosphere from brightness measurements, and estimating
depth in a scene from apparent motion in video.
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The goal of estimation is to obtain an estimation rule that maps each observed value y € Ry to a
corresponding estimated value Z(y) € R. In some cases, we restrict the estimated value to be in Rx. The
rule Z(y) is a function from Ry into R. This is similar to the decision rules of the previous chapter. In
hypothesis testing, a decision rule D(y) mapped observations Y = y into a discrete choice of hypothesis; the
choice of decision rule depended on which criteria was used to design that decision rule D(y). We will follow
similar approaches for designing the estimation rule.

An important random variable in estimation is the estimation error X — Z(Y"). This error is a random
variable that depends on both X and Y. An estimator Z(y) is called unbiased in the Bayesian sense (or
simply unbiased in the rest of this chapter) if

E[X — Z(Y)] = 0.

This implies that the error X — Z(Y) is an orthogonal random variable to the constant random variable 1.
The bias of an estimator is known as B = E[X — Z(Y)].

We note that there is a different concept of unbiased estimator in statistics, where X is not viewed as a
random variable, but instead as an unknown constant. In statistics, an estimator Z(y) is called unbiased if

E[z(Y)|X] = X for all values of X.

This is a stronger requirement for unbiased estimation. In the remainder of this chapter we use the weaker
concept of unbiased estimator in the Bayesian sense.

Another important statistic of an estimator is its mean-square error. The mean-square error (MSE)
of an estimator is MSE = E[(X — Z(Y))?]. We will use these statistics to design and characterize the
performance of estimation rules.

7.2 Maximum Likelihood and Maximum A Posteriori Estimation

As was the case for hypothesis testing problems, we refer to the conditional distributions Py |x(y|z) as
likelihoods, because they are probability mass functions over Y, but they are general functions of X = .
Since we observe the value of Y = y, we are more interested in the properties of Py |x (y|x) as functions of x,
hence we use the term likelihood. For continuous random variables Y, the same applies to fy|x (y|z), which
are densities over Y, but general functions over X = x.

We define a maximum likelihood estimator (ML) Z1(y) as follows:

Ty (y) € argmax Py x (y|z), Y discrete,
rxERXx

Tyr(y) € argmax fy|x (y|z), Y continuous,
rERXx

Since it is possible that the likelihood functions have multiple global maxima as a function of x, we use
the set notation above to indicate that the ML estimator selects one of the global maxima of the likelihood
functions.

The maximum likelihood estimator selects a value of x € Rx that maximizes the likelihood that the
observation Y = y was obtained, hence its name. It is similar to the maximum likelihood decision rule for
hypothesis testing. The main difference is that, in binary hypothesis testing, selecting the maximum of two
numbers is a straightforward operation. In contrast, selecting the maximum of a continuum of numbers (in
case X is continuous) requires the use of optimization techniques involving calculus.
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Similar to the ML estimator, we define a maximum a posteriori (M AP) estimator T 4p(y) as follows:

Tyap(y) € argmax P(x) Py x (ylz), X,Y discrete,
r€Rx

Tyap(y) € argmax f(z) fy|x (ylr), X,Y jointly continuous,
xERX

Tyap(y) € argmax f(z)Py|x(ylz), Y discrete, X continuous,
TERX

Tyap(y) € argmax P(x) fy|x (y|r), Y continuous, X discrete,
xERXx

where we have added some extra cases to allow for the possibility that one of X,Y is discrete, while the
other is continuous. For instance, in speech recognition, the features of a sound we hear (Y) have continuous
values, but the set of possible phonemes (X) that generate that sound is discrete (around 64 phonemes in
English). Similarly, in digital communications decoding, the transmitted symbols X are discrete, but the
measured waveforms Y are continuous.

Example 7.1

The number of customers arriving at a service station when they open in the morning is modeled as a Binomial(4,0.5)

random variable. No other customers arrive that day. Given that X customers arrive, the time Y hours to service their
1

requests is modeled as an exponential random variable with parameter A\(X) = = We come in the next day, and observe

that Y = 2 for the previous day. We want to estimate the actual number of customers that arrived the previous day.

Note that this is a problem with continuous-valued measurements Y but discrete unknown X. Let’s find both the ML and
the MAP estimate of X given Y = 2. From the problem description, we know that Rx = {0, 1,2, 3,4}, and the likelihood
function is known from the properties of exponential random variables, as

1 e oy >0
Fyix(yle) = § T7° v =
0 elsewhere.

For Y = 2, the ML estimator will be

~ 1 .2
Tur(y) € argmax f 2lz) = e Ttz
®) €{0,1,2,3,4} vix(2fz) 1+
To find the maximum, we enumerate the values for each x :
T 0 1 2 3 4

0.135 | 0.184 | 0.171 | 0.152 | 0.134

Based on these numbers, Zyz(2) = 1.

From the problem description, we know Px (z) = (%)0.5%. Hence, the MAP estimator is

~ 4 1 _ 2
Zumar(y) € argmax Px(z)fyx(2]z) = ( >0.54 e Ttz .
©€{0,1,2,3,4} x

To find the maximum, we enumerate the values for each x :

T 0 1 2 3 4
0.008 | 0.046 | 0.064 | 0.038 | 0.008

and we get that Ty ap(2) = 2. The difference arises because the prior probability that X = 2 is higher than that of X = 1.

Could we find the form of the estimators for arbitrary measurements Y7 We do this for the ML estimator. In this case, it
is possible, since all X does is decrease the service rate as X increases. Thus, for small Y, the best estimate is likely to
be X =0, and for large Y, it will be X = 4. The plot of the different densities fy|x (y|x) is show in Figure 7.2 below.
The figure illustrates when the different curves are maximal, and we can find those intervals by solving for the intersection
points of the curves.
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Figure 7.2: Plots of the different densities for different values of X.

We need to find the value of y where the likelihood function fy|x(y|0) = fy|x(y|1), which is
e V= %e_y/Q — ¥? =2 — y=2In(2).
Similarly, the value of y where the likelihood function fy|x(y|1) = fy|x (y]2) is
%efym = %efy/i” — /0 = g = y= 61n(g).
Similarly, the value of y where the likelihood function fy|x (y]2) = fv|x(y]3) is

1 1 4 4
5¢ y/3:Ze LN ey/12:§ — y:121n(§).

Finally, the value of y where the likelihood function fy|x (y|3) = fy|x (y|4) is
ieﬂ“’/‘l = %efym — ¥/ = g — y= 201n(§).

Hence, the ML estimator is

y € [0,21n(2)],

y € (2In(2),61n(3/2)],

y € (61n(3/2),121n(4/3)],

y € (121n(3/4)],201n(5/4)]

y > 201n(5/4).

Tur(y) =

s~ W N O

Example 7.2

One of the most useful applications of estimation is in estimating the parameters of an unknown probability distribution
from observed samples. Let X be a random variable in [0,1], with density fx(z) = 2z,z € [0,1];0 otherwise. Given
X =z, let Y be a Binomial(N,z) random variable. This corresponds to the following scenario. We have a coin with
unknown probability of heads X, as a number between 0 and 1. To estimate X, we flip this coin IV times and count the
number of heads (Y). Now we want to estimate the original unknown probability X given the number of heads observed
(Y out of N).

A quick estimator might be the fraction of heads: Z(y) = &. What is the maximum likelihood estimator? From the
problem description,

Pyix(ylz) = (g) (@)"(1—2)"v.

z = argmax N )Y (1 — )Ny
Tmr(y) = arg (y)()(l )Y

z€[0,1]
To simplify this, we maximize the log-likelihood, which has the maximum in the same locations as the likelihood, because
the logarithm is a monotone increasing function for positive numbers (e.g. likelihoods).

Zmr(y) = arg;[rgl?]x In( (jzj>) +yln(z) + (N —y)In(1l — ).
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To maximize, take the derivative with respect to x and set it equal to 0, as

dcfv(111((5))+?J1n(l’)+(N—y)]n(1_:C)) :%_ N —y _o

Solving for z will give us the estimator Zarz.(y) = %, which can be verified by substituting into the above equation and

checking it solves it. Thus, the ML estimator is the fraction of heads out of N trials.

What is the MAP estimator?

Tmap(y) = argmax 2z <];]> (z)Y(1—z)N v,

z€[0,1]

Taking logarithms,

Tmap(y) = argmaxIn(2) + In(z) + In( (1;[)) +yln(z) + (N —y)In(1 — ).

z€[0,1]

Differentiating with respect to x:

%(ln@) +ln(m)+1n(<2’>) +yln(z) + (N —y)In(l —z).) = y‘afl - ]f_—j -0
Solving, .
Yy

y+1D)A—-2)—-(N-y)z=0 <= y+1-2—Nox=0 <= z=

so Tymapr(y) = % which is a little larger than the ML estimator.

Are these estimates unbiased? Note the following:
E[Y] = E[E[Y|X]] = E[VX] = NE[X],
because Y is distributed as a Binomial(N, X) random variable. Then, for the ML estimator,

H1=Ex) - 2

E[X —
[ N

= E[X] - E[X] =0,

so the ML estimator is unbiased. For the MAP estimator,

Y41

B NE[X]+1 E[X]—1
N+1]* B

E[X] Nel - Nyl 70

E[X
so the MAP estimator is biased.

Example 7.3
We have a receiver, at a distance X meters from a transmitter. The transmitter transmits a signal with power 100, and

the signal decays as % to reach the receiver so the nominal received signal S = i%). The receiver measures the signal

strength in decibels, and the signal in decibels has some noise in it. The measured signal Y is given as
Y =40 — 40log,o(X) + W

where W is a Gaussian random variable with mean 0 and variance 4, independent of X. The prior distribution of X is

2x 3
= 0<x2<10
xr) = 106 - ’
Fx(@) {O otherwise.

Compute the ML and MAP estimators of X given observations Y = y.

From the problem description,
1 _ (y+40logyg(@))?
8

fY\X(y‘I) = 2me

The ML estimator is

5 1 _ (y—40+401logqq(x))?
Zumr(y) = argmax 8

——e
2€(0,1000] 2/ 2T
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As was the case with detection problems, it is often easier to maximize the log-likelihood, since the maximum of the
log-likelihood is in the same location as the maximum of the likelihood. Thus,

Zur(y) = argmax In

1
——e
x€(0,1000] (2\/27r

where C is a constant that does not depend on z, and so it won't affect the location of the maximizing z.

3 (y—4o+40810g10(m>>2 ) _c (y — 40 + 401log, o (x))?
8 )

We try to find the maximum by differentiating and setting the derivative equal to 0:

d ) 40
Zo (0 40+ 401083(x))” = 2((y — 40 + 40 10g o)) s = 0

Eliminating constants yields the following equation:
40—1
(y —40+40log,4(x)) =0 <= =z =10 o

Note that this is not the ML estimator yet, because it is possible that this value of X is greater than 1000. If it is, the
best estimate is to set x = 1000. The ML estimator is thus

40—y
- 10740 | y >= —80,
Tur(y) = 3
10 y < —80.
What about the MAP estimator? It is
2¢ 1 ,M

Tmap(y) = argmax —— e
z€(0,1000] 10% 2/27

Taking logarithms as before yields

(y—40+401logyg(x))? _ 2
1 UL LIS LILE ) _ - (y — 40 4+ 401og,,(x)) +n(a).
22w

~ (v) 1 (230

x = argmax In | —

mapr(y g 106 3
Differentiating with respect to =, multiplying by -1 and setting it to O yields

x€(0,1000]

2((y — 40 + 40 log,o () —2__ _ % —0 = y— 40+ 40log () — %

z1n(10) =0

We see the effect of the a priori information on the MAP estimator. It increases the estimated distance. The ML estimator
assumes that X is uniformly distributed in (0, 103) with a density that does not depend on X. The MAP estimator has
more probability for larger values of X. Thus,

404 20O
107 f —, y>=-80+ 200

Faar(y) =
10® elsewhere.

Example 7.4
Assume that X,Y are joint Gaussian random variables, with means jx, 1y and variances 0%, 0% respectively, and with
given covariance Cov[X,Y]. Using the results of Chapter 5.4, we know that we can write the joint density of X,Y as

Ixy(x,y) = fx)y(@|y) fr(y)

where the conditional density fx |y (z|y) is Gaussian, with mean ux + C‘C’a[f[i’,]y] (y — wy), and variance o% — %
Then, the MAP estimator of X given Y is
Cov[X,Y]

Tmar(y) € arg _max Ixiy(zly) = px + Tm(y - py),

because the maximum of a Gaussian density is at its mean. Hence, in this Gaussian case,

Tmar(y) =E[X |Y =y].

Let us close this section by summarizing what we have learned about ML and MAP estimates estimates:
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e ML estimates are equal to MAP estimates when the marginal density or distribution of the unobserved
variable X does not depend on z.

e The ML estimate is the maximizing value for the likelihood: argmax, fy|x(y | x).
e The MAP estimate is the conditional mode: argmax, fx|y (z|y).

e The MAP and ML estimates may be biased.

e The MAP and ML estimates may not be unique.

e In general, the MAP and ML estimates are nonlinear functions of the observation.

e For jointly Gaussian problems, the MAP estimate is the same as the conditional mean, and in this
case is a linear estimate and MMSE.

e In general, finding the MAP or ML estimate requires finding the maximum of the conditional density
or likelihood, which may be a difficult problem.

7.3 Minimum Mean Square Error Estimation

For any estimator Z(y), the error X — Z(Y) is a random variable. The mean square error is MSE =
E[(X —Z(Y))?]. We want to find the estimator Z(y) that results in the minimum mean-square error (MMSE).
We refer to this estimator as Zasprse(y). As before, assume we are given either a PMF Px (x) or PDF fx (),
depending on whether X is discrete or continuous as a random variable. Furthermore, assume we know the
likelihoods Py |x (y|z) or fy|x(y|z), depending on whether Y is discrete or continuous.

Consider first the special case where Y is discrete and Py|x (0[z) = 1 for all 2 € Rx. In simple words, the
measurement Y = 0 always happen, no matter what X is. In this case, any estimator must be a constant:
Z(0) = a. What is the best choice of constant a to minimize the mean square error? Define ux = E[X].
Consider the following identity:

E[(X —a)®] = E[(X — px + px — a)’] = E[(X — px)® + 2(X — px)(ux — a) + (ux — a)?]
=E[(X — px)? + 2E[(X — px))(nx — a) + (px — a)?
= Var[X] + (ux — a)?

Since the last term is non-negative, and is zero when a = pux, this means that Zy5r(0) = px = E[X].

Let’s now derive the MMSE estimator for general forms of likelihood. We will use the Law of Total
Expectation, with iterated expectations, as follows:

E[(X - 3(Y))] = E|E[(X — 2(Y))*|Y]

Let’s focus on the inner expectation:

E[(X —2(Y))*|Y] = E[X? - 2X2(Y) + (2(Y))*|Y]
=E[X?|Y] - 2E[X|Y]Z(Y) + (2(Y))? [functions of Y are conditionally constant]
= E[X?Y]-(E[X|Y])? + (E[X|Y])? = 2E[X|Y]2(Y) + (Z(Y))? [add, subtract same]
= Var[X|Y] + (E[X|Y] — Z(Y))? [factor into a square]
The last term is non-negative, and is zero only when Z(Y) = E[X]|Y]. Any other estimator will have a

larger conditional mean square error, and thus will also have a larger unconditional MSE. Thus, the MMSE
estimator is

Tymse(y) = EX[Y =y].
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Note that our derivation of this did not depend on whether X or Y was continuous or discrete. This is
a strong result: the estimator that results in the smallest mean square error is the conditional mean of X
given observation of Y. Note also that, when X is discrete, Zppse(y) is a real number, and may not belong
to Rx.

The MMSE estimator has some interesting properties, discussed below:

e The MMSE estimator is unbiased. That is, E[X — E[X|Y]] = 0. This follows from the Law of Total
Expectation, because

E[X - E[X|Y]} =E[X] - E[E[Xm} = E[X] — E[X] = 0.

e The error X — E[X|Y] is orthogonal to any random variable Z = g(Y"), for any bounded function Y.
Again, this is a function of the Law of Total Expectation,(as

E[(X — E[X|Y])g(Y)] = E [E[(X _EX[¥])g(Y) | Y]] _E [E[X CEX[Y] | Y]g(v)]

because ¢g(Y) is known if YV is observed, Then, E[X — E[X|Y] | Y] = E[X — E[X|Y]|Y] = E[X|Y] —
E[X|Y] = 0. Substituting into the above equation yields the orthogonality property.
e The estimator Z s (Y) is orthogonal to the error X — E[X|Y], by the above property, because it is

a function of Y.

The main limitation in computing the MMSE estimator is that one needs to compute the expected value
of X given Y = y. This can be hard to do. Furthermore, for discrete X, the MMSE estimate may not be in
the range Ryx. We revisit a couple of our earlier examples to illustrate this.

Px(z) = (i) 0.5,

1+L >0
Fyix (ylz) = {5“6 Y=

Example 7.5
Consider Example 7.2, where

elsewhere.
Then, using Bayes’ Rule, we get
et (Y05
Pxy (zly) = ny—(y)
where fy(y) =Y 1o i€~ 1+T( )0.5%. Thus,
1 : 4
Zumse(y) =EX|Y =y] = Z e (x>0'54
4\ — 4 — 4\ —
S §<2> S ) AR T

e v +3()ev/2+ 35 (2)6 3 4 3 (5)em /A4 g (Pev/s

Note the complexity of the MMSE estimator. Fortunately, since X only takes five possible values, we are able to write
the terms in each sum. For the observation Y = 2, the MMSE estimator is Zymamse(2) &= 1.95, which is different from
Zyr(2) =1 and Tarp(2) = 2. this also highlights that the MMSE estimate of a discrete random variable can be a real
number, whereas the MAP and ML estimates are restricted to elements in Rx, which are integers.

Example 7.6
Consider Example 7.3, where

2z 3
= 0<z<10
xr) = 106 - ’
Jx(@) {O otherwise.
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1 _ (y—40+401log; ()2
8

frix(ylz) = Wors

We use Bayes' Rule to compute:

_ (y+40logqg(2))?
2x 1 8

= e
Fxpy (aly) = { 22— 0<w<10%
0 otherwise.
where
1000 9. 7 _<y—40+40810g10(m>)2 P
fy(y) /O 106 Qme €
Then, )
flOOO " 22 1 o (y—40+40logjg (=) "
Tumse(y) = 0 10% 2v2r
1000 2, 1 _ (y—40+401logig(2))?
fo 106 3v/3: € 8 -z

Although we can write the integrals for computing Tasamse(y), these integrals are hard to compute exactly, illustrating
the computational complexity of computing the MMSE estimators. In contrast, the MAP and ML estimators were easy to

compute in closed form.

Example 7.7
Here we consider a simple example of a joint density where we can compute the conditional expected value needed. Let

X,Y be jointly continuous random variables with joint PDF given by

2w +y) 0<zx<y<1
0 otherwise.

Ixy(z,y) _{

Then,
Iy 2@ +y)de =3y*, yel01]
0 otherwise,

Iy (y) :/ fxy(z,y)de = {
and the conditional density is

fxy(zly) = Ixy(@y) _ {2(;1;1!) Osz<ys<l
’ Iy (y) 0 otherwise.
Hence,
Burrsw) = EXIY =] = oo [ 2@y do = Ly +47) = 2.
3y? J, 3y2 '3 9

In this case, the integrals involved simple polynomials, so we could compute the needed expectations. The MMSE estimator
turns out to be a linear function of y. We can also compute the MAP estimator as Tarap(y) € argmax,cg,y| Ixyv(z,y) =
argmax,c( , 2(z +y). Hence, Zarap(y) =y for all y € [0, 1]. This illustrates how biased the MAP estimator can be.

When the estimator takes on this simple form, we can compute the mean square error exactly. In this case, the error is
X — gY. Then,

1 1 2 2
3 20 +y)dy=2(zx)1—-2)+1—-2°=1+22x—-3z° z€]0,1
E[Y]:/ yBydy =" fx(2) = Jo 2o +) ()1 =) 0.1
0 4 0 otherwise.
1 1 2 3 5
2 3 _1. 2 3_5
E[X]f/o(x—FQx 3a')dr =+ 5 -7 =15
5 5 5 5 3
E[X — 2Y] =E[X] - 2E[Y] = = — 2.2 =q;
X - 2v]=Elx] - JEp] =2 -2 2y

which we expected because the MMSE estimator is unbiased. To compute the MMSE, we need to compute some additional
expectations:

2 P 3 5 . ) 1.1 3 7

E[Y]:/Oy(Sy)dng; ]E[X]Z/Om(l+2w—3x)dw=§+§—g=%
1 y 's 1
IE[XY]:/O (/0 xy2(x+y)dx)dy:/0 Sytdy =3
MMSE — E[(X — gyﬁ — E[X?] - %]E[XY] + %E[Yz]

7 10 5 13

30 27 ' 27 270
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It is useful to compare this to the MSE of the MAP estimator, which is
7

MSEmap =E[(X = Y)?) = E[X] - 2B[XY] + E[Y?] = £ + o5 ~

+

ot w

which is much larger than the MMSE.

There is one special case where the MMSE is easy to compute: the case where X,Y are joint Gaussian
random variables. In this case, the conditional expected value of X given Y was derived in Chapter 5.4 as

Bannsi (o) = ELXIY =) = BIX] + S ey~ EIY))
with mean square error given by
E [(X - E[Xm)?] = Var[X] - C°\‘;5([g]

In this case, both the MMSE estimator and the minimum mean square error are given in terms of the first-
and second-order statistics of X,Y, so no complex integrals need to be computed.

Example 7.8

We measure distance using acoustic echoes by measuring the travel time of a sound pulse. Let X be the unknown distance
to an object, which we model as a Gaussian random variable with mean 10% meters and standard deviation 100 meters.
Assuming the speed of sound is 300 meters/second (to simplify computation), the round trip time of a pulse from a sensor
to the object is 2X/300 seconds. However, our cheap timer is not perfectly accurate, so we model the measurement Y as

1
Y=—X+4+W
150 +

where W is independent of X, Gaussian, with zero-mean and standard deviation 0.2 seconds.

From the above discussion, we can easily compute the first- and second-order statistics of X, Y as follows:

E[X]=1000;  Var[X] = 10,000;

1 1000 20
ElY] = —E[X]+E = ==
] 150 [X]+EW] 150 3’
1 10000 1 4 1 109
Var[Y] = WVar[X] + Var[W] = 22500 + %9 + % = 998 X, W are uncorrelated.
1 1 1 10000 200
Cov[X,Y] = Cov[X, —X 4+ W] = —Var[X] + Cov[X,W] = —Var[X]| = —— = —/—.
ov[X, Y] = Cov[X, 55X + W = g VarlX] + CovlX, Wi = 5 VarlX] = =55~ = 3
Then, the MMSE estimator of the distance X given the measurement Y =y is
200
= 20 15000 20
z = 1000 + w25 (y — =) = 1000 + ———(y — —
Trmse(y) + Iog v-=3) + 00 W= 3)
with MMSE given by
40000
1
MMSE = 10000 — —25— = 10000 — LO00.000 496 meters?.
555 109

Thus, the measurement cut down the standard deviation of the location to under 30 meters.

Example 7.9

In this example we wish to estimate X by observing a related random variable Y, where the random variables X and Y are
jointly distributed with the density shown in Figure 7.3. This density is uniform over the depicted diamond shaped region.
Note that this characterization provides all the information to find both a prior model for X (i.e. the marginal distribution
fx(x)) as well as the relationship between Y and X as given by fy|x(y | x).

To find the MMSE estimate for this problem the quantity we need to find is the conditional density fx|yv (x| ). We find
fx|v (x| y) almost by inspection: restrict the joint density to the slice Y = g, and rescale so it normalizes to a probability.
Recall that fx |y (z | y) will be a slice of the joint density fx,y(x,y) parallel to the z-axis and scaled to have unit area.
This conditional density is shown on the right in Figure 7.3 for any nontrivial value of y. Since the original density is “flat,”
each slice will be flat, so all we really need to determine are the edges. The height follows from the constraint that the
density has unit area.
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4 ; ( )= 05 AfX\Y("L'|y)
x,y(Z,y)=0U.

1
2(1=|y)

-1 Y ~(1-y)) a-pp *

Figure 7.3: MMSE Example

Now, given this density it is easy to see that Zararse(y) = Elz | y] = 0. In this case, the MSE is
2 ! S| Yo s 1
MSE:E[X]:Var[X]:4/ (/ xidy)d:c:2/ (z fx)dng.
0 0 0

Example 7.10
Suppose X and Y are related by the following joint density function:

10z 0<z<y* 0<y<1

0 otherwise.

Ixy(z,y) :{

To find the MMSE estimate for this problem we need to find the conditional density fx|y (« | y). By integrating fx v (z,y)
with respect to y we can find the marginal density for y:

2

Y 10z de =5yt 0 <y <1,
fr(y) =129 vhi=vs )
0 otherwise.

Now we can use Bayes' Rule to obtain the conditional density:

fxy(ey) [8% 0<e<y’ <1
T S L b VA 4
Ixiy (@ |y) Fr(y) 0  otherwise.

The mean of the conditional density is now found as:

X1y —y = [ 22y
E[X Y:y:/ —dx = -y".
0 Z/4 3

Thus Zammse(y) = 2y°. Note that this estimate is a nonlinear function of y in this case.

Next let us find the conditional variance Var[X|Y = y].

2

VT g3 1 4
E 2Yv: = 7d = -1 .
(XY = y] /0 0 =5y

Var[X|Y = y) = BIX*|Y = y] - (BIX|Y = y))* = 1v"

Finally, the minimum mean square error is obtained as:

1

1

— gt 5ytdy = S
0

MMSE = E{Var[X|Y]} = | = T

Let us close by summarizing the properties of MMSE estimators.

e The MMSE estimator is the conditional mean E[X | Y].
e The MMSE estimator is always unbiased.

e The MMSE estimator error is orthogonal to any random variable that is a function of the observation
Y.
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e In general, the MMSE estimator is a nonlinear function of the observation Y, and can be hard to
compute.

e For jointly Gaussian problems only, the MMSE estimator is linear in Y and the conditional variance
is independent of the observation Y.

7.4 Linear Least Squares Estimation

As noted in the previous section, the MMSE estimator E[X|Y] is often a complex nonlinear function that
is hard to compute. To find a simpler estimator, we want to restrict the estimators to have a restricted
functional form. In linear least squares estimation, we restrict the estimator to be of the form Z(y) = ay + b,
for some constants a, b. The linear least squares estimator (LLSE) is the estimator of this form that minimizes
the mean square error E[(X — aY — b)?]. For estimators of this form,

E[(X —aY —)?] = E[(X? + a®Y? + b* — 2aXY — 2bX + 2abY)]
=E[X?] + a®E[Y?] 4+ b? — 2aE[X, Y] — 2bE[X] + 2abE[Y]
= (E[X])? + Var[X] + a*(E[Y])? + a*Var[Y] 4+ b? — 2aCov[X, Y] — 2aE[X]E[Y] — 2bE[X] + 2abE[Y]
We are going to manipulate this expression by adding and subtracting some terms to complete squares. This

will help us identify the values of a, b that result in minimum mean square error. We highlight in red terms
that we add and subtract to help us complete the squares.

E[(X — aY —b)?] = (E[X])? + Var[X] + a*(E[Y])? + a*Var[Y] + b*
—2aCov[X, Y] — 2aE[X|E[Y] — 2bE[X] 4 2abE[Y]
= (b —E[X] + aE[Y])? + Var[X] + a*Var[Y] — 2aCov[X, Y]
Cov[X,Y]? Cov[X,Y]?

= (b—E[X] + aE[Y])? + Var[X] + a*Var[Y] — 2aCov[X, Y] +

Var[Y]  Var[Y]
:@_Euq+wmw2+w¢m+vMWKa—Ciﬁﬁqf—cﬁﬁﬁ?

The values of a and b that minimize the mean square error are now obvious. Note that a, b are only

present in the two quadratic terms in the right hand side of the equation. Those quadratic terms are non-
Cov[X,Y]

negative, and are zero only when b* = E[X] — ¢E[Y] and a* = Vary]~ With these choices, we get the
minimum mean square error for the linear estimator as
Cov[X,Y]?
E[(X —a*Y — b*)?] = Var[X] - ——2—
(X —a"y 1) = VarlX] = =2

The linear estimator that achieves this error is the LLSE estimator, given by:

Cov[X,Y] Cov[X,Y]

Cov[X,Y]
Var[Y] Y1+ Var[Y]

Tresp(Y) = E[X] - Var[Y]

Y = E[X] + (Y —E[Y]).

This estimator is easy to compute, as it only depends on the first- and second-order statistics of X, Y. It is
not necessary to know the joint distributions of X, Y.

The LLSE estimator has several nice properties that we discuss next:

e The LLSE estimator Z1,1,sr(Y) is unbiased, as can be seen from:

Cov[X,Y]

EX-Zrse(Y)]=E|X-E[X]- Var[Y]

(Y-E[Y])| = E[X]-E[X]-
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e The error in the LLSE estimator is orthogonal to the observations Y. Again, we show this by direct
computation, highlighting in red where we add and subtract equal terms. We also highlight in blue
terms that evaluate to zero, so that the logic is clear for how the equations simplify.

BIX - Brase()Y] = B[ (X - Blx) - S - mw) v

Cov[X,Y]
Var[Y]

—E[(X — E[X])Y} -

E [(Y - E[Y])Y}

=E _(X - E[X])Y} ~E {(X - E[X})E[Y}} +E {(X - E[X})E[Y]} - WI@ [(Y - E[Y])Y}
—E :(X —E[X])(Y — E[Y])} +E [(X - E[X])} E[Y] — WE {(Y - E[Y])Y]

= Cov[X,Y] — WE [(Y —EY)Y—-(Y -EY])E[Y]+ (Y — E[Y])E[Y]}
= Cov[X,Y] — WE [(Y —E[Y)(Y — E[Y])} — WI@ {(Y - E[Y])} E[Y]
= Cov[X,Y] — C(z/\;[r)[(};}y]Var[Y] = Cov[X,Y] — Cov[X,Y] =0

The terms in blue above are 0 because E[(X — E[X])] = 0,E[(Y — E[Y])] = 0. As a consequence, the
LLSE error X — Zrrse(Y) is also orthogonal to any linear function of Y. In this derivation, we have

also shown that E {(X - IE[X])Y} = Cov[X,Y], and E [(Y - Em)y} = Var[Y].

e The mean-square error of the LLSE estimator is no smaller than the mean square error for the MMSE
estimator. The MMSE estimator mean-square error is the smallest among all the nonlinear estimators,
whereas the LLSE estimator mean-square error is the smallest among all the linear estimators only.
However, if the MMSE estimator is a linear function of Y, then the mean square errors of the LLSE
and MMSE estimators are the same, and the estimators are also equal. Thus, for jointly Gaussian
X,Y, the MMSE and LLSE and MAP are equal and have the same mean-square error.

e One interpretation for the LLSE estimator is that, given the first- and second-order statistics for X, Y,
it approximates the joint density of X,Y as a Gaussian density with these statistics. The MMSE
estimator for this Gaussian problem is the same as the LLSE estimator.

This orthogonality property is depicted in Figure 7.4. The idea is that the optimal estimate is that linear
function of the data which has no correlation with the error. Intuitively, if correlation remained between the
error and the estimate, there would remain information in the error of help in estimating X that we should
have extracted. Note that this geometric condition implies that the error is orthogonal (i.e. uncorrelated
with) both the data itself (which is obviously a trivial function of the data) as well as the LLSE estimate
(which is clearly a linear function of the data).

We can derive the LLSE estimator from the following properties: We want an unbiased estimator, that is
orthogonal to the observations. These properties can be derived directly from the properties of projections,
which we have not emphasized in our development. Given these two properties, the unbiased property
implies

E[(X —aY —b)] =0 < b=E[X] - aE[Y].
Furthermore, the orthogonality property implies

E[(X —aY —b)Y] =0 < E[(X — E[X]) —alY — E[Y])Y] = 0 (substitute b in. )

E[(X — E[X]) — a[Y — E[Y])Y] = Cov[X,Y] — aVar[Y] =0 <= a = C‘\’/Va[f[;]y]
Hence,
Brasel) = g Y +BIX] - S e By — B+ S - mw)
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Space of Linear
Functions of y

Figure 7.4: Illustration of the projection theorem for LLSE.

We can use the orthogonality property also to derive an expression for the variance of the error. Since
the error X — Zprsp(Y) is orthogonal to any linear function of Y, it is also orthogonal to the estimate

Zrrse(y). Hence,
Var[X} = Var[X — %\LLSE(Y)] + Var[’x\LLSE(Y)].

Since Trrsp(Y) = E[X] Cov[X. Y] (Y — E[Y]) is a scaled and shifted version of Y, its variance is

VarlY]
ov 2 ov ?
Var[Zrrse(Y)] = (Cva[r)[i,/]Y]) Var[Y] = C\/;[a)r%/}]/]
Hence, 2
VarlX — Zr1sp(Y)] = B(X — Trrsp(Y))?] = Var[X] — COVV:ErX[;]/]
Example 7.11

For this example let us revisit the problem of Example 7.10. We need the second order quantities E[X], E[Y], Cov[X, Y],
Var[X], and Var[Y], which we compute as:

oo 1
E[Y]I/ yfy (y) dy:/o 5y° dy:g

) S 1 py?
E[X] :/ / zfx,v(z,y) dmdy:/ / 210z dz dy == %
—o00 J —00 0 0

Var[Y] = /OO y* fr(y) dy —E[Y]* = /1 5y° dy — ((53)2 - %

oo 0
o s 10\ 5 (10\* 5
o 2 _ 2 _ 2 (W _° (W _ 2
Var[X] = /_m/_wx fx(x) dx dy — E[X] /o/o 2”10z dz dy (21) 18 <21) 98
oo oo Lyt 510 5 510 5
= —_ = 2 —_,—— = — —- —_-— = —
Cov[X,Y] = /_m/_ooxy fx,v(z,y) de dy — E[X]E[Y] /0/0 102"y dzdy 691 - 12 621 — 252
Thus we obtain for the LLSE:

Cov[X, Y] 10 | 5/252 5\ 5
vary] W T EYD = 57+ 5552 (y - 6) YT

as before. Using the formula for the MSE we obtain

L Lse(y) = E[X] +

B Cov[X,Y]* 5 (5/252)> 55
MSE =VarlX] = —anT  ~ 98~ /22 17ed - C0312

Note that this MSE is worse than that obtained by the optimal MMSE estimator of Example 7.10 — but not much worse.

Example 7.12
Consider a simple example where a temperature sensor measures the true temperature 7', which is assumed to be a Gaussian
random variable, with mean 27 and variance 9. The measurement observed is modeled as

Y=T+V
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where V' is measurement error, independent of 7', corresponding to quantization noise. V is assumed to be uniformly
distributed on [-3,3]. Hence, E[V] = 0,Var[V] = 3. This is a common model for measurements, where part of the
measurement models the relationship between the unobserved variable 7" and the measurement Y, and the other part
represents the errors in the measurement process.

The goal is to generate the LLSE estimate of T based on observation of Y. We compute the needed statistics below:

E[T] = 27; E[Y] =E[T]+E[V] =27; Var[T] =9;
Var[Y] = Var[T] + Var[V] 4 2Cov[T, V] = Var[T| + Var[V] = 9+ 3 = 12 (T, V independent.)
Cov[T,Y] = Cov[T,T + V] = Var[T| + Cov[T, V] = Var[T] = 9;

With these statistics, we have

~ _ Cov[T,Y] _ 9 1 3
TLLSE(Z/) —E[T]—F Var[Y] (y—E[Y]) =27+ 12(3/—27) =1 - 27+ 1 Y.
The MSE error is )
. Cov[T,Y] . 81 9

Example 7.13

Let's revisit the example of estimating probabilities using multiple trials. Let P be a uniform random variable on [0,1]. Let
measurement Y be a Binomial(N, P) random variable, corresponding to the total number of successes in N independent
trials with probability of success P for each trial. From previous examples, we know

Far(y) = Tvap(y) = %

As discussed previously, this is an unbiased estimate.

Can we compute the MMSE estimate for this simple case? The conditional density of P given observation Y = y is given
by
N N—
Pyipylp)frp) _ ()P —p)"
Pr(y) () Jo av(1 = @)N-vdg

Evaluating the denominator is not easy, but we can do the integral as follows, using repeated integration by parts:

1 _ 1
/ @1V g = Y / ¢ (1 —q)" TV dg
0 0

feiy (ply) =

y+1
1 1
Y 1— N yd — ( / dg = [—
:>/Oq( ) q N 4 da= N ™
Y
Thus, Py (y) = ﬁ,y € {0,1,..., N}, which is a discrete uniform distribution. Intuitively, this makes sense. Since we

have no information about P, every value of Y is equally likely when averaged over all the possible P.

The conditional density of P given Y =y is
N -
fry(ply) = (N +1) (y)py(l -p)" 7V
The MMSE estimator is
. 1 1 N N
Prumse(y) = / pfryy (ply) dp = / (N +1)p y p’(1L—p)" ¥ dp.
0 0

This has another difficult integral, but we can again evaluate it using repeated integration by parts as:

1 1
_ N — o
/py“(l—mN vip = y/ P — NI gp
0 0

y+2

1 1
yHlq _ \N—y _W/ Novg L1
= [l = S [ = ()
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Thus,
~ N 1 1 y+1
P —(N+1)- - - - .

Note this is different from the MAP estimator, but it is also unbiased. Since it is linear, this is also the LLSE estimator!
We can verify this through computation, as

E[P] = 0.5; E[Y] = 0.5N; Var[P] = 1—12; Var[y] = w
CovlY, P] = E[E[(Y — 0.5N)(P — 0.5)|P]] = E[E[(Y — 0.5N)|P](P — 0.5)]
= E[N(P — 0,5)2} - N/Ol(p* 0.5)2 dp = 17]\;

Then,

~ N 1 1 y+1
Prrse(y) = (N +1)- ( ) . : = = Pumse(y).
y) Nt2 ()T N2

The resulting MSE for the LLSE and MMSE estimator is

CovlY,P]> 1 N? 12 1 N 1

MSE=VarlPl = = 5 =15 " NN+ 120 TNt TN+

The MSE for the MAP estimator is

MSE = E[(P — %)2 = Var[P] —

— - = 4 [

2Cov[P, Y] n Var[Y] 1 2 N+2 1
N N2z 12 12 12N 6N

Note the MAP MSE is slightly larger than the MMSE and LLSE MSE.
Let us close by summarizing the properties of LLSE estimates:

e The LLSE estimate is the minimum MSE estimate over all linear functions of the data.

The LLSE estimate is always unbiased.

The associated error covariances satisfy is at least as large as the error covariance of the MMSE
estimate.

The LLSE estimate equals the MMSE estimate for the jointly Gaussian case.

The LLSE estimate only requires knowledge of second-order properties.

7.5 Estimation for Random Vectors

We conclude this chapter by discussing how the estimation concepts extend to random vectors. This extension
is critical for many applications, including statistics and data science. In this case, the unobserved variables
and the observed variables can both be vectors. The model is as follows. We suppose that we have a random

Y
is the unobserved vector. Let X € ™Y € R™. The objective in estimation is now to construct an estimator
Z(y) that will estimate the unobserved vector X based on the observed values Y = y. Note that the vector
estimate is a vector composed of the estimates for each of the components of X, so that

.. . X . .
vector Z that can be partitioned into two subvectors as Z = {] , where Y is the observation vector and X



7.5. ESTIMATION FOR RANDOM VECTORS 179

We begin with the statistical description of the random vectors. Assuming the random vectors are
continuous valued, with joint densities, we will have a joint density

Ixy(@y) = frix(ylz) fx(z)

where we have shown the factorization of the joint density into a conditional density for the observed
variables, given the unobserved variables, and a marginal density for the unobserved variables.

The mean square error of an estimator of the vector X given Y is defined as

n

MSE =E[) (X; - #(Y))’] = E[(X - Z(y))" (X - Z(y))]-
k=1

This is a common metric that will be used for evaluating the quality of estimators.

7.5.1 ML and MAP estimation for random vectors

Given this statistical description, we extend our estimation concepts to random vectors. The maximum
likelihood estimate (ML) is given by

Ty (y) € arg max fyix(ylz)

where the maximization is now over vector arguments, and often requires iterative search algorithms. The
main difficulty in this estimation is that the likelihood function fy|x(y|z) can have many local maxima,
which makes the search for a global maximum a difficult combinatorial problem. However, for some special
cases, it will be possible to find global maxima, as we will illustrate with examples.

Similarly, the maximum a posteriori (MAP) estimate is given by
Zpap(y) € arg max fyix (ylz) fx (2).

The MAP estimator includes the additional information on the prior density of the unobserved variables X.
The optimization still has difficulties with local maxima. Nevertheless, specifying a prior distribution for
X serves as a regularization term that guides the optimization towards specific regions in the search space
space where the maxima are expected to be, and makes the solution less sensitive to measurement errors.

Example 7.14

One of the most interesting applications of vector estimation is for estimating the parameters of the distribution of a
random variable, given many observation samples. For instance, assume you are measuring the delays in your favorite
transportation mechanism, the Green Line. This delay 7" is modeled as an exponential random variable with parameter A,
but the parameter A is unknown. To estimate )\, we observe the sample delays over many days. We assume the delays in
different days are independent, with the same underlying distribution for T. Let T}, denote the delay measured at day k,
where k =1,2,..., N.

To formulate this in the form of a vector estimation problem, let X = X be the unobserved variable. Our observed vector
Y is given as

Y1

Y

X =

Yy
With this choice of variables, we need the statistical description. Note that, given A = x, the conditional density of Y} is
an exponential density:
e *h yp >0,
0 otherwise.

fyiix (yilz) = {

Furthermore, the fact that each of the Y, represent an independent sample of T vyields the following expression for the
joint conditional density of Y given X:

N
fyix(yle) = HfYMX Y |z).
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With this information, we can now obtain the ML estimate of X, given observation of the vector Y, as

Zur(y) € arg max fyix(ylz) = argmaxln (fyx (ylz))

n (fyix(ylr) = > In(fy,(a(yslz)) = NIn(z Zykﬂf

k=1

To solve the maximization problem, we differentiate with respect to = and find where the derivative is zero: as long as
that happens for positive x, it will be the maximum.

d N
Nn(z YT | = — — Y =0 <= =z = .
TR WAEEES e

Note that the value of x where the derivative vanishes is unique and non-negative. Therefore, the ML estimator is
ML (y) ZNN . This is an intuitive estimator, as it says that the estimate of the rate A is the inverse of the average

delay.

What if we had some prior information on X, and we wanted to generate the MAP estimator? Assume that we know that
the rate is distributed uniformly in [0.1,1.1], corresponding to average delays between 0.909 and 10 minutes. Thus,

fel(e) = {1 7€ [0.1,1.1],

0 otherwise.

In this case, the MAP estimate is given by

N
z € argma T =arg max In xz)) =arg max Nln(x) — z.
wap(y) € argmax fy)x (ylo)fx (z) = arg__max | (Ffrix(ylz)) = g, max Nln(z) ;lyk
The prior information resulted in restricting the search to the interval z € [0.1,1.1], because the product of the two densities
is zero outside of this interval, and cannot be a maximum. Proceeding as above, the point where the derivative with respect

to zero vanishes is x = ENN e However, this value of  may not be in [0.1,1.1], in which case we find the closest value
k=1

in the interval where the function is maximized (the log-likelihood has a unique maximum and is continuous), so that the
MAP estimator is

N
0.1 s < 0L,
Taap(y) =4 1.1 % > 1.1,
_N i
S o otherwise.

Example 7.15
Let U be a Gaussian random variable, with unknown mean m and variance v. We are interested in estimating the mean
and variance of U. We collect N independent samples of U, where sample k is denoted as Y.

. . . X
When posed as an estimation problem, our unobserved variables are m and v. Let X = {T} = {Xl}' The observed
2
vector is
Y1
Ys
Y =
Yy

As before, we need the likelihood of the observed vector given the unobserved vector. From our Gaussian assumptions, we

have
f 1 _ (a/k;wl )2
r) = ——e¢ z2
Vil x (Y |z) =

Furthermore, under the assumption of independent sampling, we have

N

Frix(ylz) = TT friix (yelo).

k=1

Thus, the log-likelihood is given as

k*wl

Mz

o N
In (fy|x(ylz)) = > I (frp=(yelz)) = — > In(2m2)
k=1

k=1
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We wish to maximize the above over any real-valued 1, and for x2 > 0, as x2 represents the unknown covariance. Hence,
the ML estimate is

N
= N (yr — 21)?
Ty (y) € arg max <—2 In(27z2) — E el I

= z22>0,21 1 210

To maximize, take the partial derivative of the above with respect to x1 and x2 and set both equal to zero:

9 <_Nln(271'w2) - ZN: L —961)2) - ﬁ: (ykw_xl) =0+ 1= 72;:’:1 Yk

(971'1 2 b1 2$2 1 2 N
N N N 2
9 N (yx — x1)? N (yx — z1)° 2 k=1 Yk — 1)
I @2y - S WE T ) Wk ZT1) _ ) e gy = b=t 701
Ers < 5 In(2me2) ; 222 222 +k¥—1 223 2 N

Note that the solution for x2 is always non-negative, satisfying the constraints. The ML estimate is thus

Sk~ ey (g — M)’
T a7 s VML =

mmrL = N N

What if we had some prior information on m and v? Assume that, apriori, we knew that m was Gaussian, with mean 0,
variance v, and v was uniform in [1,5]. This implies

22

1L w1
f&(@) — fx1|X2(x1‘l'2)fX2($2) — %27“26 2z9 yi T2 € [175]71’1 (S §R7

0 otherwise..
The MAP estimator is now obtained as

rap(y) € arg max (fyx(ylo)fx(@) =arg max (frix(ylo)fx(@).

because the joint density is zero when z2 ¢ [1, 5] and hence cannot be maximal there. Taking logarithms, we get

In (fyx(s1) fxc(2) = (;V In(2mzz) — 37 @2‘“) ~ Lin(2mzs) — In(@) - L

T
k=1 2

Differentiating with respect to x1 and x2 yields:

o0x1 To 229

9 (—Zln(wag) -3 (@”“2_7”“)2 - %m(zw) —In(4) — “’1> =y o) o

The equations are easily solved as:

For the second equation, we have

—(N + 1)z +§:( —21)’=0 <= =z _ T —m)’
2 e Yk 1 - 2 = N—|—1 .

Taking into account the constraints on the optimization, the MAP estimator is

N _# 2
ZN 1 W<L

_ =1 Yk~ Shg (we—mamr)?
mMAP:i]\];-f—l]_ 5 UmaAP =15 %>57

N ~ 2
Zr=1Wk—MMmL)

NTT otherwise.
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7.5.2 MMSE and LLSE estimation for random vectors

The MMSE estimator of X, based on observations of Y, is given by

E[X,]Y] S J o fxy (2ly) do
: = : =E[X]|Y].

Zyyvse(y) = : :
E[Xn[Y] [ Janfxy (2ly) dey

Computation of this estimate requires the conditional density fx|y ((z|y), obtained by Bayes’ Rule as

Ixy (zly) = leX(fy|f(2{X(x)~

Computing the denominator in Bayes’ Rule requires a multidimensional integral that is usually very difficult
to evaluate; this limits our ability to compute MMSE estimators for general distributions.

There is a special case where the MMSE solution can be computed efficiently: when X and Y are jointly
Gaussian random vectors. As we derived in 5, the conditional expected value E[X|Y] is a linear function
of the observed value Y = y, and the MMSE estimator will be the same as the LLSE estimator. We will
discuss the LLSE estimator for random vectors below.

We assume the random vector Z = {Y} has first-order statistics given by

Ex

BlZ) = |

Let nx,ny be the dimensions of the random vectors X, Y. The random vector Z has covariance matrix > z,
which can be partitioned along the dimensions of X, Y as follows:

v, | XX TXY

= [yx Yy |

Note that ¥ x is an nx X nx matrix, which is the covariance matrix for the unobserved vector X. ¥y is an
ny X ny matrix, which is the covariance matrix for the observed vector Y. The matrix X x y is an nx X ny
matrix known as the cross-covariance between X and Y, and is defined as

Txy =E[(X -EX])(Y - IE[Z])T] .

A linear estimator of X based on Y is an estimator of the form Z(y) = Ay + b for a constant matrix A
of dimension nx X ny, and b is a constant vector of dimension nx.

We want to find the best linear estimator of X given observation Y, where best is the estimator that yields
the smallest least squares error. Rather than posing this as an optimization problem, we will derive this
estimator using the orthogonality and unbiased properties of the LLSE estimator, which can be established
using the principles of best approximation. Specifically, we seek a linear estimator that is unbiased, and
where the estimation error is orthogonal to the observations.

The first condition is an unbiased estimator, which requires

E[X—AX—Q]:O:H&—AHZ—Q <— QZEK_AHX'

The next condition is that the estimation error must be orthogonal to the measurements. The error is a
vector, e = X — AY — b. Orthogonality requires that every component of the error is orthogonal to every
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component of the measurement vector:

E[(X — AY — b)YT] =0= E[XYT —AYY" — by
=E[(X -E[X Ny ” (Y EY)Y ] (substituting for b,)
=E[(X - E[X])Y"] - AE[(Y — E[Y])Y"]
=Yxy —ALy =0 < A=Xx,y¥5;'

Thus, we have our LLSE estimator for random vectors:

Zrrsp(y) =EX]+ ZLZZE (Y - E[Y]).

This is very similar to the structure of the scalar LLSE estimator we discussed in the previous section. The
main difference is that, in dealing with vectors, we must take matrix inverses and preserve the order of the
operations when we take constants out of the expectations.

We can also use orthogonality to derive an expression for the covariance of the estimation error. We know
the estimator is orthogonal to the error vector, because the estimator is a linear function of the measurement
Y. Hence, X = e+ 2 gp(y) is the sum of two uncorrelated vectors. Thus,

Yx =X+

Zrrsp(¥):

We also know that Z; ;g (Y) is a linear transformation of Y, so

ZLse(¥Y) — 1x Yz ZYZ 12X Y = Z&Xzilzgx
Therefore,
Yo =Yx - TxyYy Tky

We illustrate these results with an example:

Example 7.16

Let X be a random, two-dimensional vector with statistics E[X] =0,Xx = {_é 9 7(1)'9] .

Let W also be a two-dimensional vector, uncorrelated with X, with statistics E[WW] = 0,Xw = { 0 o1l

0.1 0]

Define the observation vector Y = X + W. Then, the first and second order statistics of X, Y are:
1.1 -0.9
E[Y] =0; ZX_ Zé—s- Souw = |:70.9 11 :|

Y x,y = Cov[X,Y] = Cov[X, X] + Cov[X, W] = Cov[X, X] = Xx

2.75 2.25

Note that Zil = {2 95 2.75

] With this, the LLSE estimator is

- _ 1 [ 1 —09][275 225]  [0725 —0.225
Trrsp(y) = dy +TxyTy (Q_Hx)*[—o.g 1“2.25 2.75}ﬂ*{—0.225 0.725]

The covariance of the estimation error ¢ is

Y. =

1 -09] | 1 —-0.9] 12.75 2.25 1 —-0.91 | 0.0725 —0.0225
-0.9 1 -0.9 1 2.25 2.75] [-0.9 1 ~|—-0.0225 0.0725
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Chapter 8

Sums of Random Variables: Bounds and Lim-
its

So far in this course, we have focused mostly on pairs of random variables X and Y. Many experiments of
interest generate more than two random variables for each outcome. When we consider we consider n > 2
random variables X1, ..., X,, we describe their probabilistic behavior using a joint Cumulative distribution
function (CDF) of the form

Fx, . x,(@1,...,2n) =P{X1 < z1,..., X, < z,}],

which is the natural extension of the joint CDF for pairs of random variables. When the joint random
variables are discrete, we define the joint probability mass function (PMF) as

Px,. . x,(x1,...,2n) =P{X1 =21,..., X,, = 2, }]
When the random variables are continuous, we define the joint probability density function (PDF) as

an

. Fx,, . . x.(@1,...,2p).

Ixo o x, (@1, m) = )
All of the basic properties that we established for CDFs, PMFs and PDFs for pairs of random variables
extend naturally to CDFs, PMFs and PDF's of n random variables.

In this chapter, we study experiments that generate a countably infinite collection of random variables.
Such collections are often called discrete time random processes, as the index of the random variables
can be mapped to the countable natural numbers. Figure 8.1 compares experiments that generate random
vectors, which we have discussed previously, to ones that generate a countable collection of random variables.
Formally, each element X} (w) of the collection { X7, X5, X3, ...} is a random variable, a measurable function
from the sample space € to the real numbers. Such collections are often called random processes or stochastic
processes. A random process is an indexed collection {X;,¢ € T} of random variables generated by a single
experiment. When the index T is countable and can be mapped to the natural numbers A, we refer to
such processes as discrete-time or discrete-index random processes. Such processes are generalizations of the
concept of random vectors introduced in earlier chapters, as shown in Figure 8.1.

C e (), X (@)=X(0) [T
e e (X, %), Xs(@), -}
— ~ ~.
[ -~
Sample = \\ Sample ‘ { 00}
Space Space / ':R
Q ) ! Ev;m R 71 Q ws Ev;m
outcome outcome
Experiment Experiment
Random vectors Infinite sequence of random variables

Figure 8.1: Experiments generate infinite sequences of random variables.

The study of general random processes is a subject of a more advanced course, and requires tools that
we will not introduce in this course. There are special cases which we can address with simple extensions of
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the methodology we have described in previous chapters. Like random vectors, for general random processes
one would have to define the joint probability mass functions for finite set of distinct indices k1, ko, . .., kp, of
the form kal Ky reor Xy, (z1,22,...,2,) if the random variables are discrete. Equivalently, one would need
to define joint probability density functions th Ky s X (z1,22,...,2,). Computing such joint densities
is cumbersome and hard to describe.

In this chapter, we focus on the special case where the collection of random variables {X1, X2, X3, ...}
are mutually independent. This implies that, for any finite set of distinct indices k1, ko, ..., ky, and subsets
Ay, As, ... A, C R, we have

PI{X), € A1}, {Xk, € Az}, {Xk, € Au}] = P{Xs, € A} P{Xs, € A1}]---P[{Xp, € Au}]
When the random variables are discrete, the joint probability mass functions factor as

Pxy XiyooonXa, (01,2, .., ) = Px, (21) Pxy, (22) - P, (%)

For continuous random variables, the joint densities factor as

ka‘lekz"'"an (x1,22,.. Tn) = ka1 (xl)fch2 (z2) - kan (@n)-

This independence property will allow us to analyze properties of the collection of random variables using
the tools we have developed for the analysis of pairs of random variables in earlier chapters.

Of particular interest is the case where the collection { X7, X, X3, ...} corresponds to outputs of repeating
an experiment independently, with an infinite number of trials. For instance, let X; correspond to the output
of a Bernoulli trial, with parameter p that represents the probability that X; = 1. The empirical theory of
probability suggests that p should be the fraction of experiments that result in an outcome X; = 1. From
the results of the last chapter, the maximum likelihood estimate of p given observations of the outcomes of
the first N experiments is ZN:TlX What happens as the number of experiments N increases to infinity? In
the limit, we would expect that this estimate, which is a derived random variable, would converge in some
sense to the correct value p. We will analyze the behavior of such sequences of random variables and make
precise in what manner do such sequences converge.

8.1 Independent, Identically Distributed Random Variables

A collection of random variables {X,,,n € N} is referred to as an independent, identically distributed
collection of random variables if the random variables X7, X5, ... are mutually independent, and the marginal
cumulative distribution function of each random variable is the same for each random variable. That is,
Fx,(z) = Fx,(z) for any j,k € N. We use the short-hand notation i.i.d. to represent independent and
identically distributed in the rest of this chapter.

Let {X,,,n € N'} be an i.i.d. collection of random variables, each of which has finite mean p and finite
variance o2. Define a sequence of dependent random variables S,, using partial sums as:

Spn=X1+Xo+ -+ X,.

Using linearity of expectation and the i.i.d. property, we establish the following:
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What about the covariance of S,,7 This is also computed readily, as

VarS, = E[(S, — E[Sx))*] = E[(D_(X; — )]

=E[> > (X, — w)(Xi — )]
j=1k=1
= > D) E[X; - w)(Xi — )]
j=1k=1
= Z COV[Xja Xk] - ZVar[XJ] = n0'2
j=1k=1 j=1

where the last equality follows because the X; are i.i.d., hence Cov[X;, X;] =0 if k # j, and Cov[X;, Xi] =
Var[X;] =o? if k = j.

Notice that, as n grows, E[S,] and Var[S,,] both grow linearly with n. Thus, we don’t expect any type
of convergence for the sequence S,. Let’s define instead the variables M,, = %, the average of the first n
random variables Xj. Then,

E[M,) = 25
n
and ) )
1.2 no o
Var[M,] = (=) V. = — = —.
ar[M,,] (n) ar[S,,] — -

Note now that, as n increases, the variables M, have the same mean, and the variance of the random
variables decreases. The distribution of M,, becomes more concentrated about its average u.

Example 8.1

Let X be an exponential random variable with A = 1. Thus, E[X] = % = 1. Let M, denote the sample mean of n
independent samples of X. How many samples are needed so that the variance of the sample mean is less than or equal
to 0.017

From the properties of exponential random variables, Var[X] = %2 = 1. Hence, for the average of n samples,
Var[M,] = % This means that we need at least 100 samples for the variance to be 0.01 or less.

At this point, we don’t know much about the probability distribution of M,,. Indeed, since M, is a sum
of independent random variables, its probability density function is an n-fold convolution of the densities of
the scaled random variables X /n. In order to make statements concerning the probability of events related
to M,,, we discuss next some estimates of such probabilities based on only mean and variance information.

8.2 Useful inequalities for Random Variables

In order to analyze notions of convergence of random variables, it is useful to bound the errors between the
limit random variable and elements of the sequence using inequalities that do not require knowledge of the
full distribution of the random variables. Below, we present a few useful inequalities:

8.2.1 Markov inequality

Suppose that X is a non-negative random variable with known finite mean, and we want to obtain some
bounds on the probability distribution function of X. The Markov Inequality is given by

PN 2 a)) = [ fxle) do < 2o,
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How do show the Markov inequality is true? The steps below illustrate the argument when X is a continuous
random variable with finite expected value. Since X is non-negative, the density fx (z) is zero for x < 0.

E[X] = /OO xfx(x)de = /Oooxfx(x)dx

— 00

:/ fo(z)d:c+/ xfx(z)dx
0 a
> / xfx(z)dx (Drop the first term, non-negative)

> a/ fx(x)de = aP[{X > a}] (x > ¢ in the integrand)

The Markov inequality follows by dividing both sides by a.

The above argument can be generalized as follows: Let g(x) > 0 everywhere, and let g(x) > a > 0 for all
x € A, for a subset A of the real line . Then,

Elg(x)) = |

TEA

WWAmM+/ o) fx () d

¢ A
zL@gmﬁﬂmdxz¢Aafﬂmdx
— aP[{X € A}].

Hence, P[{X € A}] < Z9X)]

a

8.2.2 Chebyshev inequality

Suppose that the mean ;o and variance o2 of a random variable X are known, and we would like to bound
the probability that the variable is far from its mean. The Chebyshev inequality states that

[\™]

B[{1X — ul > a}] < 5.

The Chebyshev inequality can be derived from the Markov Inequality, by defining the non-negative
random variable Y = (X — p)2. Since E[Y] = Var[X] is finite, the Markov inequality states that

E[Y] o?
2 _
PHY >a°}] < peaiais
In terms of equivalent events,
2
o
PHIX — pl > a}] =P{Y > a®}] < —,

which shows the Chebyshev Inequality.

A different way of writing the Chebyshev inequality is as follows: Let a = a’o. Then,

o2 1

P{|X — p| > a}]P{|X — p| > d'o}] =< g2 g
This can be interpreted as in terms of number of standard deviations away from the mean. The probability

that X is more than a’ standard deviations away from its mean is less than a%

The above can be generalized for any random variable X such that E[(X — u)"] is finite for some even
number n, as
E[IX —m|"]

a n

PH{|X —m| = a}] = P{[X —m|" = a"}] <
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or, more generally, for any real, nonnegative, even function g(x) which is non-decreasing for x > 0, and has
finite expectation. Then,
Elg(X)]

P{g(X) = g(a)}] <
g(a)

Example 8.2

A random variable W, which represents the waiting time to be served at a restaurant, is uniformly distributed in the interval

from 0 to 10 minutes. Estimate a bound on the probability that the wait is at least 8 minutes.

Note that, in this case, we know the exact probability of the event {W > 8}, because we have the density of W:
Hence, P[{W > 8}] = 0.2. What if we estimated this using either the Markov inequality or the Chebyshev inequality? We

know that E[W] =5, and Var[W] = 122 = 23. We also know that W > 0. Hence, the Markov inequality indicates that

EW] 5
P > < —— = —
w28 < 2 =2,
which is much larger than 0.2. It shows that the bound can be loose.
What about the Chebyshev inequality? It states:
25
2 25
PH{|W —-5|>3} <3 =2,
(W -5 >3)) < 3 =2

If we divide by 2 to represent the one-sided probability that W > 8, we have

25

PUW 2 8} < 2.

which is closer to 0.2, but still a loose bound.

Example 8.3

Assume X is Gaussian, with mean 0 and variance 1. Then, P[{|X]| > a}] = 2Q(a), where Q(-) is the standard Gaussian
complementary cumulative distribution function. We can compare, as a function of a, the estimate generated by the
Chebyshev inequality and the true value 2Q(a), as:

Value of @ Chebyshev Inequality 2Q(a)

a=2 0.25 0.0455
a=3 0.111 0.0027
a=4 0.0625 0.0000633
a=>5 0.04 0.0000006

The values illustrate the conservative nature of the Chebyshev inequality.

Example 8.4
Chebyshev's Inequality can provide a tight bound for some distributions. Consider the discrete random variable X with
range in Rx = {—1,1} such that P(1) = 0.5, P(—1) = 0.5. Then, E[X] = 0,Var[X] = 1. Therefore, Chebyshev’s
Inequality states that

P{IX —E[X]| = 1}] < 1.

However, we know that P[{|X — E[X]| > 1}] = 1 in this example, so the bound is equal to the actual probability.

8.2.3 Chernoff and Jensen Inequalities

There are other bounds on probabilities of random variables that are useful to know. We discuss them briefly
here without proof.

Given a random variable X, define a new random variable Y, as:

1 X>
Y. = - o
0 otherwise.

That is, Y is the indicator random variable that X > e.
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Then, for all t > 0, the following inequality holds:

etX > etey

Thus,
E[¢"X] > E[e"Y] = “P[{X > ¢},

which implies that
P{X > e}] < e ™E [etX] , t>0.

This bound can be tightened through the choice of t, as follows:

> < M —te tX > .
P[{X_e}]_rtnzlgle E[e], t>0

Note that this bound requires computation of E [etX ] , which is equivalent to computing the characteristic
function (or moment-generating function) of X! Thus, this bound requires extensive knowledge of the full
probability density function of X, and not just its mean and variance.

Another useful inequality is Jensen’s inequality. A convez function g(x) of a continuous variable z in an
interval T is a function such that, for any « € [0, 1], any z, y € I, the following is true:

glaz + (1 —a)y) < ag(z) + (1 — a)g(y).

Let X denote a random variable with probability density or probability mass function distributed over
I, and let p denote its mean, which must be in I. Then, for any convex function g, we have

9(p) < E[g(X)].

One way to recognize that this is true is to note that, if X were a discrete random variable with Px (z) =
a, Px(y) =1 — a, then the definition of g as convex implies

glaz + (1 - a)y) = g(E[X]) < ag(z) + (1 — a)g(y) = E[g(X)].

This can be extended to other discrete probability mass functions, and in a limiting argument to continuous
random variables X .

Jensen’s inequality can be used to derive many inequalities concerning moments of random variables,
such as the Cauchy-Schwartz inequality that we used to prove that the correlation coefficient between two
random variables X,Y is a number with magnitude less than or equal to 1.

Example 8.5
Assume X is Binomial(n, p). Then, using the Chernoff bound, we have

P[{X > ¢}] < mine “E [etx] , t>0.

t>0

We can compute E [etX] in this case, as X is the sum of n independent Bernoulli(p) random variables Y1, ...,Y,. Hence,

n

E [etx] =E [etzzzl Y’“] = kl;[lJE[etY’“] = kl:[l(l —p+pe’)=(1—p+pe)".

Let's compute a bound on P[{X > an}] for 1 > a > p. Then,

. —tan tX . —tan t\n
E [ } = 1-p+
rtnzl(r)le (& I;EHZIO e ( p pe )

Taking the derivative with respect to t and setting it equal to O yields

d

S (e A= p4pen)") = —ane™ " (1 —p+ pe’)" + npe’e (1 - p+pe)" T = 0.
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Dividing by common factors yields the solution at the minimum value:
1
an(l —p+pe') = npe’ = €' = @

Substituting into the bound, we get:
mpe e[ = (85 (i) - GO0 a7 (55)

0.75n
For p = 0.5, = 0.75 the above bound is P[{X > an}] = 2(%) , which decays fast as n increases.

8.2.4 Hoeffding’s Inequality

Hoeffding’s inequality provides bounds on probabilities of the averages of random variables. Let X1,..., X,
be independent random variables whose range Rx, C [ak,bg], where —oco < ap < by < oo. That is, with
probability 1, ap > X < b for k =1,...,n. We define the sample mean of these variables by

1 n
M, = g’;Xk.

Then,

2n2c2

P{M, —E[M,] > e}] <e SimaCr=o?

__2n22

P[{Mn - E[Mn} < _6}] <e Sho1(br—ap)?
We can combine the two bounds to get a bound that is similar to the Chebyshev bound, as
2n2e2

P[{|My, — E[M,]| > €}] < 2e ZimaCrmew?,

For the special case that Xj are independent, identically distributed Bernoulli(p) random variables,
ap = 0,b, =1, and thus Y, _, (by — ax)? = n. In this case, Hoeffding’s inequality yields

P[{| My, — p| > €}] < 272",

Example 8.6
Let's apply Hoeffding’s inequality to the previous example, where X is Binomial(n, p), so that X is the sum of n independent
Bernoulli(p) random variables Y7,...,Y,. We want to compute P[{X > an}] for 1 > o > p. Note that M,, = =, so

P{X > an}] =P[{Mn > a}] = P[{Mn —p > a — p}. Using Hoeffding’s inequality, we have
PU{M, —p > a—p} <e 2@ P
For a = 0.75,p = 0.5, this bound becomes P[{M,, —p > 0.25} < ™ 5.

8.3 The Law of Large Numbers

The law of large numbers has a central role in probability and statistics. It states that if you repeat an
experiment independently a large number of times and average the result, what you obtain should be close
to the expected value. It is consistent with the frequency interpretation of the concept of probability, where
the probability of an event is the fraction of times when the event occurs if the experiment were repeated
independently an infinite number of times. There are two main versions of the Law of Large Numbers: the
weak law of large numbers and the strong law of large numbers. The differences are subtle, and we will
highlight some of the

We state the weak law of large numbers first, and then prove it.
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Theorem 8.1 (Weak Law of Large Numbers)
Let {X,,} be a sequence of independent, identically distributed random variables with finite means E[X,,] = u, and define
the sequence of sample means {M,} as
1 n
M,==-Y X;

Then, for any € > 0,
ILm PK | M, —pu| >e}] =0.

The proof of this theorem in its general case is subtle, and requires a truncation argument. We will
instead show this using the additional assumption that Var[X,] = 0% < oco. In this case, we have already
shown in Section 8.1 that E[M,] = u, Var[M,] = %2 Using Chebyshev’s inequality, we have that,

o2
Pl{[Mn —pl 2 e}] < a2

Taking the limit of this as n — oo establishes the weak law of large numbers.

As mentioned earlier, the weak law applies in the case of i.i.d. random variables, but it also applies in
some other cases. For instance, if the X, have finite bounded variances, and are uncorrelated, the law still
holds. Even if the variances grow unbounded with n, as long as the variance of the averages M,, goes to zero
as n — 0o, the same argument can be applied to establish the weak law of large numbers.

The type of convergence used in the weak law of large numbers is convergence in probability. A sequence
of random variables {M,,} converges to a limiting random variable M in probability if and only if

lim P[{]|M, — M| > e}] = 0.

When the random variables X,, have finite variance, bounded by o2, we can show the averages M,
converge to their limit in mean square also, which means

lim E[(M, — u)?] = 0.

n— oo

This is trivial to show as we know the variance of M,, goes to zero, and the mean is p.

Example 8.7
Assume X is a Bernoulli random variable, with probability p that X = 1. Let X be a repetition of the same experiment,
for k =1,2,.... From our results in estimation, we know that the maximum likelihood estimate of p given n observations
Xy, is given by
n
_ —1 Xk
p]y{L({X}wk = 1, 2, cee 771}) = &_Tl

which is the sample average discussed above. By the weak Law of Large Numbers,

’IL7 X’C 0'2 1
k=1 ~

k=l X, k=1,2,... > <—<
n pML({ ks P ,’I’L})|7E}]7 2 = 4 2

PH{]

which converges to zero as n — oo.

Example 8.8
One of the problems with MMSE estimation that we discussed in Section 7.3 is that the integrals are hard to compute.
For instance, in Example 7.6, we had to compute the following integral to get the conditional density of X given Y = y:

flOOO 2¢ 1 ——<y—4°+4081°g10(“>2

0 106375=¢ .

In general, suppose we have a function g(x), and we wanted to compute f: g(z) dz, but g(z) was a continuous function
that was hard to integrate. We can compute the integral approximately using the weak Law of Large Numbers as follows:
Let {X,} be an i.i.d. sequence of random variables, uniformly distributed in [a,b]. Let Y;, = g(X,). Then, {Y.} is also
an i.i.d. sequence, and E[Y] = f: §(z)
Var[V,] = 0% < oo.

dx. Given that [a, b] is a bounded interval and g(z) is continuous, we can show that
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By the weak Law of Large Numbers, the average w is close to E[Y]. Hence, an approximation for the
integral is

b
Yi+Yo+...4Y,
/g(m)dwz(b—a) 1t .
o n
Furthermore, we can compute the probability that the error is significant using the Chebyshev inequality. This probabilistic
technique is known as the Monte Carlo method of integration.

The statement of the weak law of large numbers is a statement about probabilities, averaged over all the
outcomes in the experiment. It does not guarantee that, for any outcome w € ) that generates a sequence
of realizations of random variables X (w), X2(w), ..., the average of those random variables will be close to
E[X] = p. It does not even guarantee that the set of outcomes for which the average does not converge to u
has zero probability of occurring. For that, we need the Strong Law of Large Numbers, stated next:

Theorem 8.2 (Strong Law of Large Numbers)
Let {X,} be a sequence of independent, identically distributed random variables with finite mean p. Define the sequence

of sample means {M,} as
1 n
M, = — X
n n § k

then,
P [{w € Q: lim M,(w)= ,u}] =1.

n—00

The type of convergence in the strong law of large numbers is known as almost sure convergence. It states
that the probability of an outcome where the sequence does not converge is zero. The proof is more complex
than that of the weak law and is beyond the scope of our course. The strong law requires independence of
the random variables X}, whereas the weak law can be established using uncorrelated assumptions.

The main difference between the strong law of large numbers and the weak law of large numbers is where
the limit is placed in the statement: The weak law states:
lim P{ M, —p| >¢e}] =0,
n—oo
whereas the strong law states:
PH{weQ: lim M, =pu}| =1.
n—oo

Thus, the strong law states that, for any € > 0, the probability of the event {|M,,—u| > ¢ for at most a finite n}
is equal to 1.

8.4 The Central Limit Theorem

The law of large numbers characterizes that the sample averages M,, converge to a deterministic quantity,
the mean E[X] = u. Basically, it states that the cumulative distribution function Fj;, (z) converges to a unit
step function:

0 z<p

Fun,(2) = {1 i

It is often of interest to characterize the error M,, — u. We know from our previous analysis that, if the
sequence { X} is i.i.d., with finite mean p and finite variance o2, the error M,, — p has 0 mean, and variance
2. If we define a scaled variable Y;, = @(Mn — p), the variables Y, have zero mean and variance 1 for all
n. We can express Y, in terms of the partial sums S,, = nM,, as

Mn — K Sn —nyp

Yn = =
7= ovn
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The Central Limit Theorem states that, as n increases, the cumulative distribution functions of Y,
converge to a special form, as stated below:

Theorem 8.3 (Central Limit Theorem)
Consider a sequence of independent, identically distributed random variables {X,} with finite mean x and finite variance
2. Denote the partial sum S,, and the partial average M, as

Sn = Xn:Xi; Mn = %Sn

i=1

Define the new random sequence {Y,} as

_ Sa—nu My —p

o\/n =

Then, for any real. number y, the sequence of cumulative distribution functions Fy;, (y) converges to ®(y), the cumulative
distribution function of a standard Gaussian random variable with mean 0 and variance 1.

Y,

The surprising part of the Central Limit Theorem (CLT) is that the distribution of the individual random
variables can be arbitrary. This is why Gaussian random variables are used so often in probabilistic analysis,
since they approximately model sums of many independent effects. Note also the scaling used in the Central
Limit Theorem: S, has mean nu and variance no?. Hence, Y, is measured in terms of units of standard
deviation away from the mean, a similar scaling that we used when computing probabilities of Gaussian
random variables.

We sketch a brief proof the the CLT by computing what are known as characteristic functions, which are
the Fourier transform of the probability density functions of continuous random variables, or equivalently the
Fourier transform of the of the generalized probability mass functions (expressed as the sum of §(-) functions)
for discrete random variables. Since density functions integrate to 1 and probability mass functions sum to
1, the characteristic function transform will be well-defined for all jw, with j = v/—1.

The characteristic function of a random variable X is

[Z. e fx(z)dx X continuous,

U =K JjwX = .
w(w) [e”7] {EmkGRx e?“Tk P(xy,) X discrete.

Note that

1 n
is a sum of independent, zero-mean random variables. There is a convergence result in probability called
Lévy’s continuity theorem, which states that, if the characteristic functions of a sequence of random variables
Y,, converge pointwise as n — oo to a function ¢ (w) which is continuous at w = 0, then the CDFs of Y,
converge pointwise to the CDF of a random variable Y with characteristic function ¥ (w). We will use this
result to prove the CLT using characteristic functions.

The characteristic function of Y,, is given by:

Uy, () = E[e%¥+] = B[/ 7 va 2h=1 (X5 =0))

- F lH ejwaxl\/;(xkﬂ)‘|

k=1

E {ejw ”Xlﬁ(Xk_“)] (independence)

k=1

= (IE [ejwﬁ(xlfm} )n (identically distributed)

where the last equalities follows from the independent, identically distributed assumption. We expand the
exponential in the expression using a Taylor series as:

gz gw o) W (X - p)?
o\vn 202n
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For large n, we neglect terms beyond the first three terms to get the approximation:

. X1—p iWEIX, — QEXf 2
E[ejwo'rL]%1+jw[l N]iw (X1 — )7
ovn 202n
2
w
~1— —
2n

because E[X; — u] = 0, E[(X; — p)?] = 0. Thus,

Uy, (w) = (1 - =)"

and, taking limits as n — oo, we get

lim Uy (s) = e’ /2
n—oo

Let Z be a zero mean, unit variance Gaussian random variable. Then,

o0 o0 o0

]. 22 ]. _22 w2 W2 ]. _ (z—jwz)? _ w2 —w?

Uy (w) = / e~ THIwE g, = e~ T I T = gy = — e 2 Tdz=e 2 .
Coo V2T Lo V2T —oo V2T

Thus, the characteristic functions of Y,, converge for each w to the characteristic function of a zero-mean,
unit variance Gaussian random variable for all values. By Lévy’s continuity theorem, this implies that the
CDF of Y,, converges to the CDF of a Gaussian(0, 1) random variable.

The CLT implies that, given any i.i.d. sequence of random variables, we can compute probabilities of
events relating to the sum of the random variables approximately using a Gaussian distribution. That is,

PH(X: +Xo+...+ X,) <al]x ® (a\;ﬁZM>

and

vn

As a rule of thumb, these approximation are very accurate as long as Ia?}#xl is less than 3.

P[{i(X1+X2+...+Xn)<b}]x<1><bzu>.

Example 8.9

Assume we have a disk drive that takes X milliseconds for each disk access time, where X is a random variable, uniformly
distributed in [0,12]. Assume one must access disk 12 times independently, and define the total access time T' = X; +
...+ Xi12. Then, E[T]12E[X] = 72 msec, and Var[T] = 12Var[X] =12 - % = 144. Therefore, the standard deviation of
the sum is 12. We want to compute the probability that the total wait time is greater than 75 seconds.

We approximate this with the CLT, since T is the sum of i.i.d. random variables.

75 — 72
12

P[T > 75| =1—Fr(75) ~ 1 —® ( ) =1-®(0.25) = Q(0.25).

What about the probability that 7" < 487 This is

48 — 72
5 = (-2 = Q).

Note that, to compute this exactly, we would need the probability density of 7', which would require performing 12
convolutions.

Fr(48) ~ ®(

Example 8.10

A Modem transmits 10* bits, where each bit is i.i.d. with probability p = 0.5. We would like to estimate the probability
that we get more that 5100 one bits. We also want to estimate the probability that the number of one bits we receive is
in the interval (4900,5100].

The total number of one bits received, T is the sum of 10* independent Bernoulli random variables. We know this is a
Binomial (104,0.5) random variable, but computing the quantities asked involve summing between 100 and 200 binomial
terms. We approximate this using. the CLT as follows:

E[T] = 10"p = 5000; Var[T] = 10*p(1 — p) = 2500; o = 50.
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With this approximation, we quickly estimate

5100 — 5000
50

P{T € (4900,5100]}] = Fr(5100) — Fr(4900) = ®(2) — ®(—2) = ®(2) — Q(2).

P[{T > 5100}] = 1 — Fr(5100) ~ 1 — &( )=1—3(2) = Q(2).



Chapter 9

Sample Statistics

Suppose we have a random variable X, and we collect n independent samples X7, Xo, ..., X,, of this random
variable. The probability model is that the samples are random variables X, Xo,..., X,, are mutually
independent and identically distributed with the same distribution as X. As we discussed in Chapter 77,
the sample mean M,, = %Zzzl X}, is an approximation to the expected value E[X] that converges with
probability 1 to the true expected value E[X], by the Strong Law of Large Numbers.

For any finite n, the sample mean M, is a random variable. This random variable is the sum of n
independent random variables, so describing statistical properties such as its PDF if X were a continuous
random variable would require computing n-fold convolutions of the PDF fx(x).

Nevertheless, we know
I I
E —_ frd —_ —_ = — —_ frnd
(M, —E[X]) =E[~ > Xi] - E[X] = — > E[X;] — E[X] =0
k=1 k=1
from the property that all the X}, are identically distributed. Under the assumption that the random variable
X has finite variance o2, we can also compute

1 « o?
Var[M,] = 2 ZVar[Xk} =
k=1

because the random variables X} are independent.

The Central Limit Theorem states that a scaled version of M,, —E[X] has a CDF that converges to that of
a standard Gaussian random variable with mean 0 and variance 1. Specifically, we define Z,, = \/EMTL%E[X]
as the scaled random variable. Then,

lim P{Z, <z}] = ®(x), forallzecR.

n—oo

In this chapter, we are concerned with finite collections of independent samples of a random variable,
using these samples to estimate properties of the random variable X. Unlike the limit results of 7?7, we want
to estimate the accuracy we can obtain from a fixed finite number of samples n. We consider problems in
both estimation and detection. For instance, we want to estimate the average height of women in the Boston
are by measuring the height of 100 women, uniformly selected from Boston’s population. How accurate will
our estimate be? As another instance, consider conducting a trial for a new vaccine trial with a test group
of 100 subjects and a control group of another 100 subjects. Do the results indicate that the vaccine makes
a significant difference, and what confidence do we have in that conclusion?

9.1 Estimation of Mean and Variance

If we don’t know the true mean, but can collect independent samples of X, the sample mean M, is often a
reasonable estimator for the true mean E[X]. The sample mean is computed by generating n independent,
identically distributed X,k = 1,...,n, each of which is identically distributed as X. In this case,

1 n
M, = ng:le
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has mean E[X], and M,, converges to E[X] by the Strong Law of Large Numbers. If X has finite variance
o2, M, is the sum of independent, identically distributed random variables, and thus has variance %2

Suppose that we would like to estimate the variance o2 of X. Assuming the variance is finite, it is
obtained as

Var[X] = o2 = IE[(X - E[X])Z].

Given knowledge of E[X], and samples X1,..., X,, an estimate of the variance can be obtained as
1 n
- 15 -mix
k=1
Since the X}, are independent and identically distributed as X, we have

_ % SOE[(X, - E[X])?) = % " Var[X] = Var[X].

3

By the Strong Law of Large Numbers, we know lim,, . V, = Var[X] with probability 1.

What if we did not know the mean E[X], but had only the sample values X,k = 1,...,n to estimate
the variance? In this case, we may consider estimating the variance by using the sample mean M,,. That is,

lz X —
k=1

3

This can be simplified as

V= o S (XF - 2X0 M, + M)
k=1
R T )
_nkZ:le Q(nkZ:le)Mn+Mn

1 & 1 &
:—§ X2 —2M? M2:—§:X27M2
n k n+ n nk: k n

Using the previous equation, we can compute the expected value of this estimate as

E[V,] = E[X?] — E[M?] = E[X]? + Var[X] — E[X]? — Va;m - ; Lvar[X].

This shows that the estimate V,, is a biased estimate of Var[X], and underestimates it by a small amount.
To compensate for this, one can use the unbiased estimate:

n

-1
k=1

This sample variance is an unbiased estimate of the true variance of X based on the samples X1,...,X,,.
Most computer packages compute the sample variance as V,.

What about an estimate of the standard deviation? While we can generate different estimates for the
standard deviation directly, the common definition the sample standard deviation is

Gn =V

This guarantees the consistent interpretation that the sample standard deviation is the square root of the
sample variance,
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9.2 Confidence Intervals for Sample Means

In the press, we read reports that quote statistics such as 57% + 3% of responders prefer brand A to brand
B, with confidence interval 95%. How were such numbers calculated? We discuss this in this section.

Assume we have a random variable X, and we collect n independent samples X of X. Assume X has
finite mean p and variance 0. The sample mean of X, given n samples X; is M,, = %22;1 X}, which is a
random variable. From the previous analysis, we know

ar 0'2
EM,) = E[X] = s Var[a,] = 20X = 7

M,, is an estimate of E[X]. Given a small constant «, we want to find an interval [A4, B] such that
P{A <E[X]| < B}M,]=1-«a.
If we find such numbers, B — A is called the confidence interval and 1 — « the confidence.

Often, we select the interval to be centered about the sample mean M,,, in order to determine how close
M,, is to the true mean E[X]. Specifically, consider the event {|M,, — | < €} for some € > 0. Given the
statistical properties of M,,, we can compute P[{|M,, — p| < €}] = q¢. We say that the true mean is in the
interval [M,, — €, M,, + €] with confidence g.

We can use several of the limit theorems from Chapter 8 to estimate these confidence intervals. The
2
variance of My, is -, which is small for large values numbers of samples n. If we know o2, the Chebyshev
inequality yields
2
o
P[{an - ,u| > 5}} < e
Thus, P{|M,, — pu| <e}] >1-— g—;, yielding an estimate of the confidence level g =1 — 7‘:—:2 for fixed values
of n,e.

If the random variables X}, are bounded with values in [a, b], we can use Hoeffding’s inequality to get an
improved confidence level:

_ _2né?
PI{|M, — ] > e} < 2¢ T2,

2
)2

2ne

Thus, the true mean is in the interval [M,, — €, M,, + €] with confidence level ¢ =1 — 2¢  (-a

For large n, we can approximate this probability using the Central Limit Theorem (CLT). The CLT

states that the random variable Z = M has the distribution of a standard Gaussian random variable,
so Z ~ N (0,1). Then,

) = 2"

BIIM, — ul > ] = Bl{]2] > V") = 201 — a( )

Thus, the true mean is in the interval [M,, — e, M,, + €] with confidence level ¢ = 1 — ZQ(S‘(F).

If we know € and n, we can estimate the confidence level that |M,, — u| < € using the above results. What
if we knew € and the desired confidence level 1 — «, and wanted to know how large n had to be to get that
confidence level for that interval?

To answer this, if we are using the CLT, we determine a value T such that Q(7T) = «/2 using the standard
Gaussian CDF table in Appendix C. Then,

]}D[{|M <TY

ox

~1-—aq,
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or equivalently,

TO’X
This translates to the following statement: with confidence level 1 — «, the true expected value p lies in the
interval [M,, — %7 M, + T—\/%] The length of the confidence interval is QT—\/%. To determine the number of
samples n required for an interval of length 2¢, we solve

Similarly, we can determine how large n needs to be using other bounds such as the Chebyshev bound
or Hoeffding’s Inequality. We illustrate this process in the examples below.

Example 9.1
Suppose X is a Bernoulli(0.25) random variable. Assume we collect 100 independent, identically distributed samples of

X, denoted as Xy, k = 1,...,100. Define Migo = 155 3,2 X;. Estimate the probability P[{|M100 — 0.25| > 0.01}].

The variance of a Bernoulli(p) random variable is p(1 — p). Thus, the variance of X is <, and the standard deviation is

7. Using the Chebyshev Inequality, we obtain

3

L 3
P[{|Mioo — 0.2 01 < —16 < 2 g
[{[Mi00 = 0.25] > 0.01}] < 756570577 < ggg = 187

which is a useless estimate, as we know probabilities are less than 1. This means we don’t have enough samples to estimate
the mean of X accurately.

Since Bernoulli random variables take values in [0, 1], Hoeffding's inequality yields

200(0.01)2
- )

P[{|Mioo — pu| > 0.01}] < 2e~ 12 =2¢ %
which is also a number greater than one, so it is not a useful bound.

What about the estimate from the Central Limit Theorem? In this case, M, is approximated by a Gaussian with mean

: : —0.25 _ 40(My,—0.25 .
0.25 and variance 15555 = 155 T he transformation Z = JV%" = 2 el %) ‘makes Z a standard Gaussian random
1600 '

variable. The event {|M,, — 0.25] > 0.01} is equivalent to the event {|Z| > %}. Thus, we can estimate the desired

probability as

0.4 0.4

—} =2Q(—=) =~ 0.8174.
=200

P[{| M, — 0.25] > 0.01}] ~ P[{|Z| > 7

Example 9.2
Continuing the example 9.1, we would like to estimate the required number of samples n so that the sample mean
M,, € [ —0.01, x + 0.01] with confidence 0.95.

Using the Chebyshev inequality, we want

3
16
P[{|M,, —0.25 > 0.01}] < —15 < 0.05

n-0.01
3
Combining the last two equations, we get n > 5'(0{31)3 = w = 37,500. It is clear why 100 samples were inadequate
in the previous example.
Using Hoeffding's inequality yields
2n(0.01)2 n
P[{|M, — p| > 0.01}] < 2~ 12 = 2¢ 10000,
Let n be such that
2e” 10000 = (.05 = — n__ In(0.025) <= n = 50001n(40) ~ 18,444.

10000
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Using the Central Limit Theorem, we get the following estimate:

0.01

3
16n

P[{|M,, — 0.25] > 0.01}] ~ 2Q(

) < 0.05.

We use the standard Gaussian table in Appendix C to find the value of z* such that Q(z) = 0.025, or equivalently,
®(z) = 0.975. Looking at the table, we find z* = 1.96. Hence, as long as %2 > 2*, we have Q(-%2L) < 0.025.
(2) g g == Q(\/T) >

_3_ 3
16n 16n

Simplifying the above inequality, we get

0.01v16n
V3
We see that the estimate obtained from the Central Limit Theorem can give us the required confidence for M, €

[w — 0.01, u + 0.01] with a smaller number of samples than the estimate from the Chebyshev Inequality or Hoeffding's
inequality.

> 1.96 = n > (1.96v/3)% - (25)% ~ 7203.

Example 9.3
Let's ask a different question related to example 9.1: Given that you have collected 1000 samples X,k = 1,...,1000,
what is the 95% confidence interval around u for the estimate Mipoo?

Using the Chebyshev Inequality, we have

3
P[{| M1000 — 0.2 <16 <y,
[{|M1000 — 0 5|>6H_1000'62_005
This implies
6 V6
2> 2 > Y- ~0. )
€ _1600:>E_ 20 0.3873

Using the CLT, we get Q(—=5=) = 0.025, which means that

3
_3
16000

16000
2000(e)?

Using Hoeffding's inequality, we get e~ 12 = 0.025 which means that > = 1;(()4(1)%) = e = 0.0429.

= 1.96 = ¢ = 1.964/3/16000 ~ 0.0268.

Example 9.4

We are taking measurements of an unknown distance d, and the measurements are noisy. Hence, we assume that a
measurement X = d + W, where W is a zero-mean random variable with variance o2. Hence, E[X] = d, Var[X] = ¢
We can repeat this measurement n times, resulting in n independent, identically distributed measurements Xy, k= 1,...,n.

We will estimate d as the sample mean of these measurements, as
n

= X

k=1

Suppose we want to determine how many measurements are needed to obtain 99% confidence interval that the error
|d —d| < 0.1? Assuming n is large, so that we use the Central Limit Theorem approximation, so that the random variable

@ is approximated by a standard Gaussian random variable with mean 0, variance 1. Using the standard Gaussian
table in Appendix C, we determine a value z* such that Q(z) = 0.005, or equivalently, ®(z) = 0.995. Looking at the table,

we find 2* = 2.575. This implies that P[{¥"=9)| < 2 575}] = 0.99, or equivalently, P[{|d — d| < 2.575-2}] = 0.99.

We want to find 7 so that the 99% confidence interval is |d —d| < 0.1. Hence, we must select n such that 2.575 7= < 0.1
This requires n > (25.75)%¢%. For o = 1, this is approximately 663 samples.

Example 9.5
Suppose we measure the response time X of a service system, and are interested in estimating the mean response time.
The 10 measurements we collect are listed in the observation vector Y below:

X:[41.6 41.48 4234 4195 41.86 42.18 41.72 42.26 41.81 42.04]T
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The sample mean is Mo = 41.924, which is an approximation of E[X]. Suppose we know ox = 0.1. We want to find a
95% confidence interval for E[X].

Going to our table for Q(-), we try to find a value T such that Q(T') = 0.025. We find that T ~ 1.96. Then,

1.96(0.1)
V10

Thus, we say that E[M] € [41.862,41.986] with confidence 95%.

P [{|E[X] — M| < ~ 0.062| ~ 0.95.

In the previous examples, we assume that we know the variance of X, denoted by ¢2. In many practical
situations, we don’t know the variance, but have only the observed sample values. We have two approaches
for this: one is to use an upper bound on the standard deviation, computed from the properties of the
random variable in question. For instance, the variance of a Bernoulli(p) random variable is p(1 — p). For
any value of p, this number is less than or equal to 0.25, so that the standard deviation is bounded above
by 0.5. We can use similar approaches with other types of random variables, provided we have bounds on
their parameters.

If the random variable X is bounded with range Rx C [a,b], we can use Hoeffding’s inequality, which
does not require knowledge of the variance, but instead uses knowledge of the bounds on the range of X.

7(1)

2
Alternatively, we can bound the variance by (Z’T, the largest variance any random variable can have with
range Rx C [a,b].

A second approach is to use the sample standard deviation as a substitute for the true standard deviation.
We illustrate this with examples below.

Example 9.6

We are interested in estimating the probability p that people like bananas. We want a confidence interval of length 0.06
around our estimate, with confidence level 95.5%, corresponding to T' = 2 standard deviations. How many people do we
need to poll, assuming that the opinions of people are independent?

Note that the answer any one person gives is a Bernoulli random variable, which is 1 if they like bananas, and 0 if they
don’t. We don't allow “l don't know” responses... Thus, if we knew p, the variance in the random variable X corresponding
to a response would be p(1 — p), which is a number less than 0.25. Let’s use this as a bound for the true variance which
we don't know. Let the response of person k be Xy, and let Z,, = %Zzzl Xk. Then,

2+/0.25
P{|Z. —p| < > 0.955.
(12 -5 < 2025 >
To get the confidence interval we want, we must have Y025 — L = 996 — (0.03. Hence, v/n ~ 1%, so n ~ 1112

e . R A, . >
persons need to be interviewed. We could reduce this number somewﬁ;t by estimating the variance of the specific responses
adaptively. By using a bound, we get a conservative number to interview that does not depend on the actual responses.

Note that another bound on the variance is used in Hoeffding's inequality: when the range of X is bounded by [a, b], the
variance is bounded by (b — a)?/4.

Example 9.7
Let’s return to Example 9.5. Assume we did not know the variance of X. Let M, denote the mean response time given
n observed data. We can estimate the variance using the estimator V,, = —2= 3% (Vi — M,)>.

For the data provided in Example 9.5, with n = 10 samples, the variance estimate is V1o = 0.081. Taking the square root
yields a sample standard deviation of 0.284.

Now, with only 10 measurements, the 95% confidence interval would be

1.96(0.284)
V10

Thus, our confidence interval increases almost by a factor of 3: E[X] is in the interval [41.75, 42.1] with confidence 95%.

P [{|E[X] — Mio| < ~ 0.175} | ~ 0.95.
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Example 9.8

Here is an example we use in many engineering applications. You are trying to estimate the reliability of a system by
using a simulation program that introduces the various random effects that can cause system failures. Note that, in each
simulation, the system either fails or not, and hence the outcome of each simulation is a Bernoulli random variable Xy,
where X, = 1 indicates success. The reliability we are trying to estimate is E[X]. If we conduct 100 simulations, and
the estimated reliability p = Migo = 0.95, and the sample variance V,, is 0.05, what can we say regarding the confidence
interval and the level of confidence for this estimate?

Let’s look for the 0.955 confidence level interval, corresponding to a threshold of two standard deviations. With V,, = 0.05,
the sample standard deviation is 0.223. With 100 simulations, the length of the confidence interval is

2. (0.223)
V100

Thus, our true reliability E[X] € [0.905,0.995] with confidence 95.5%. Note that this is an estimate, because the sample
variance V,, was random, and not a bound on the true variance.

P{{| Mioo — E[X]| < 1 > 0.955.

What if we increased the number of simulations to 25007 Then our confidence interval tightens significantly, so E[X] €
[0.936,0.964] with confidence 95.5%. The important relationship is that the width of the confidence interval is inversely
proportional to the square root of the number of simulations.

We conclude this section by referencing some examples illustrating how confidence intervals are used.
In 2008, a Gallup survey (https://news.gallup.com/poll/105850/ownership-may-good-wellbeing.aspx) was
conducted to determine whether TV ownership was good for wellbeing. People questioned were asked to
rate their life on a scale of 0 to 10. Specifically, they were asked: “Please imagine a ladder with 11 steps,
numbered zero to 10, where the top represents the best possible life for you, and the bottom represents the
worst possible life for you, which step comes closer to the way you feel about your life?” The responses were
sorted into those that came from households with TVs, and those that came from households without TVs.

Note that the answers are integers from 0 to 10. Just like we did for Bernoulli replies, we can bound the
variance of the responses by the variance of a discrete uniform distribution on {0,1,...,10}, which is 10.
Hence, the standard deviation is v/10. For a population of 810, a 95% confidence level would result in a
confidence interval of 4+0.24.

Typical outcomes of this poll are statements such as: “For the European data, one can say with 95%
confidence that the true population for wellbeing among those without TVs is between 4.88 and 5.26.”
This estimate resulted from a sample of 810 persons that did not have TVs in their home. Note that this
confidence interval (+£0.19) is narrower than the worst-case interval above, indicating that the Gallup survey
used a standard deviation estimate based on the responses that was smaller than the worst-case estimate.
Similarly, another statement in the poll was “For those with TVs the 95% confidence interval for well-being
is much narrower — between 5.78 and 5.82 — because of the larger sample size.” In this case, the poll included
40,267 households with TVs in their home. An increase in the number of samples by a factor of nearly 50
reduced the confidence interval by a factor of close to 7. The ratio is not exactly v/n because the estimate
of the standard deviation also changed.

Given that 2020 is the year of the U.S. Census, one should note that the U.S. Census Bureau routinely
uses confidence levels of 90% in their surveys, which is about 1.645 standard deviations. One survey of the
number of people in poverty in 1995 stated a confidence level of 90% for the statistics: “The number of people
in poverty in the United States is 35,534,124 to 37,315,094.” That means if the Census Bureau repeated
the survey using the same techniques, 90 percent of the time the results would fall between 35,534,124 and
37,315,094 people in poverty. The stated figure (35,534,124 to 37,315,094) is the confidence interval. Now
you know a little more as to how to interpret such statistical statements that appear in our news reports.

9.3 Sampling Gaussian Random Variables

In the previous sections, we did not assume that the variable X that had n independent, identically dis-
tributed samples was Gaussian. For large n, we were able to use properties like the Central Limit Theorem
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Figure 9.1: PDF of chi-squared random variables with different degrees of freedom.

to approximate the distribution of the sample mean as Gaussian, and get confidence intervals for estimates
of the sample mean. However, we could not do the same for estimates of the sample variance, or for small
number of samples n.

When X,k = 1,...,n are Gaussian with mean g and variance o2, the sample mean M,, is Gaussian,
and we can use Gaussian properties to get confidence intervals for small values of n. We have

PI{IM, — ] > )] = 21— (Y1) = 2(V),

What about the sample variance? The estimate of the sample variance is V,, = ﬁ S (X — My,)2
This random variable is now the sum of squares of random variables. We introduce two new classes of
continuous random variables which will be used to analyze properties of the random variance.

Definition 9.1
Let X1,..., X, be independent, standard Gaussian random variables with mean 0, variance 1. Define the random variable
Y = X?+ ...+ X2. Then, Y is said to be a chi-squared random variable with n degrees of freedom. We write this as

Y ~ x%(n).

Figure 9.1 shows the probability density function for Student’s t random variables with different degrees of
freedom.

We can derive the following properties for Y ~ x?(n):
o E[Y] =3, E[X}] = n.
o E[Y? =370 i E[X7X}]. We can compute each term in the sum as

EXZEX:)> =1 j#k

BIXGX] = {E[X;g] 3 j=k.

Thus, E[Y?] = 3n +n? —n = 2n + n?.
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o Var[Y] =E[Y?] - E[Y]? = 2n.
e Let U ~ x%(n) and V ~ x?(m) be independent random variables. Then, Y = U +V ~ x?(m + n).

Like standard Gaussians, the CDF of chi-squared random variables is tabulated and used to compute
probabilities of intervals. An important property of chi-squared random variables is to analyze the statistics
of estimates of the sample variance, when the underlying random variables X are Gaussian.

Let X1,..., X, be independent, identically distributed Gaussian random variables with X ~ N (u, 0?).
The sample mean and variance are:

1 — 1 «
My,=—-> Xp: Vio=—> (Xp—M,)>%
nkz_l 4§ n—lg( k )

Then, we will show that the random variable Y = % >0 | (X — M,)? is a x*(n — 1) random variable.
Moreover, Y and M, are independent random variables. Note that Y is proportional to the sample variance,
as Y = 5LV,

o2

Let’s first show that Y and M,, are independent random variables. Write 02Y as

n n

oY = (X — My)? = (X1 — M,)* + > (X — M,,)? = (Z(Xk - Mn)>2 + (X — M,)?
k=1 k=2 k=2 k=2

where the last equality follows because Y ;_;(X) — M,) = 0. We know X}, are i.i.d. and Gaussian. Let’s
define a linear variable transformation as follows: Wi = M,,; Wy = X9 — M,,; W3 = X3 — M,; ---W,, =
X, — M,,. This is a linear transformation, so the variables W} are Gaussian, and zero-mean. Furthermore,
the inverse of the transformation is

Xo=Wo =Wy Xg=Ws+Wy;--- Xp =W, + W ; Xy =W — Wy —--- = W,.

As a matrix, we write this as

1 -1 -1 -1
1 1 0 0

X =AW = 1 0 1 0 w
1 0 0 1

Note that det[A] = n. Since the X}, are independent, we have

1 o (mp—m?
(o) = e Bt

ey X)) =
- ) (V2mo?)n
Using the linear transformation, the joint PDF of W is Gaussian, and given by

n i =Sp o w—w)? i (wpwy—w)?

fw(wi, ..., wy) = ————¢ 20 e k=2 3o
wlen )= Vamory

Let’s expand and regroup the quadratic in the exponent, as

n n n n 2
(wq —Zwk —u)2—|—Z(wk—w1 —p)? = w? —2wlz(wk—u)—|— (Zwk —,u) +
k=2 k=2 k=2

k

||
N

NE

(wg — p)? + 2w, Z(wk — )+ Zw%
k=2 k=2

x>~
I|

2

n n 2
= nd 3=+ (w1
k= k=2

2
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Hence,

2
¥ ( ) n ,% fTacZL;z(wk—u)QJr(Z;f:z wk—u) 202
w(wi,...,wy) = ————e€ 2% ¢ ,
Y " (V2re?)n
which shows that W is independent of Wy, W3, ..., W,.

Observe that M, = Wy, and Y = 2 ( S W+ (Xhs, Wk)2) Hence M,, and Y are independent.
To show that Y is a chi-squared random variable with n — 1 degrees of freedom, note the following:
— (Xp — p)?
U= Z o2
k=1

is a chi-squared random variable with n degrees of freedom. Then,

& (Xy, — My, + M, — N)Q . (X — Mn)2 . (Xp — M) (M, — ) . (M, — U)2
U= Z - Z o2 +2 Z o2 + Z
k=1 k=1

a? o?
k=1 k=1
~ (Xp =My (M — p)?
:Y+2(Mn—u)z p +n o
k=1
(M, — p)?

=Y
+n s

where the middle term vanishes because M,, is the sample mean of the Xj. The last term is the square of a
standard Gaussian random variable also, because E[M,,] = p, Var[M,,] = %2 So, we have V =Y + Z, where
V ~x2%(n),Z ~ x?(1) and Z is independent of Y. This means that Y is a chi-squared random variable with
n — 1 degrees of freedom.

Another standard distribution that is used in statistics is the Student’s t-distribution. The CDF of this
distribution is also tabulated. Let Z be a standard Gaussian random variable, and let Y be a chi-squared
distributed random variable with n degrees of freedom, that is independent of Z. Then, the random variable

Z
W= —"_

3=

has a Student’s t-distribution with n degrees of freedom, abbreviated as W ~ T'(n). Figure 9.2 shows the
PDF of a Student’s t-distribution with different degrees of freedom, as well as a standard Gaussian PDF.
The plots illustrate that the Student’s t-distribution approaches a standard Gaussian PDF as the number
of degrees of freedom increases.

The following properties of W ~ T'(n) are stated without proof:

For n > 1, E[W] = 0. For n = 1, E[W] is undefined.

For n > 2, Var[W] = 5. For n = 1,2, Var[I¥] is undefined (infinite).

For large n, the density of W approaches N (0, 1).

e The PDF of W is an even function, symmetric about 0.

Why are Students’ t-distributions important? Given X1, Xa,..., X, ii.d. Gaussian random variables
with mean g and variance o2, and let M,,,V,, denote the sample mean and variance of these variables. Let
o = +/V,, denote the sample standard deviation. Then,

w o VM, —p) (M — )

o V'V
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Figure 9.2: PDF of chi-squared random variables with different degrees of freedom.

has a Student’s t-distribution with n — 1 degrees of freedom (W ~ T'(n —1).)

To see this, note the following:

W: \/H(Mn_ﬂ) _ \/E(Mn_/") a

VVa o Vi

The variable Z = M is a standard Gaussian random variable. The variable % can be written as

% = nilY, where Y is a chi-squared random variable with n — 1 degrees of freedom. Hence, the ratio is a

Student’s t-distribution with n — 1 degrees of freedom.

We can use this to compute confidence intervals for samples of Gaussian random variables without
specifying either the mean or variance of the distribution, as shown in the example below.

Example 9.9

Let's return to the problem of example 9.5, with the additional assumption that response time X of a service system is
Gaussian with unknown mean p and variance 0. We collect 10 independent measurements of X, listed in the observation
vector Y below:

X:[41.6 41.48 4234 4195 41.86 42.18 41.72 42.26 41.81 42.04]T

The sample mean is M1o = 41.924, which is an approximation of E[X]. The sample variance is 0.0807, and the sample
standard deviation & is 0.284.

We want to find a 95% confidence interval for E[X]. We have 10 samples, so %ﬁ_m T(9). We use Microsoft

Excel or MATLAB to find the value for which the CDF of a T'(9) random variable has value 0.975, which is approximately
2.262.

Then,
P {‘M| < 2.262}} =P [{|M10 —pul < 2:262-0.284 ~ 0.236}| = 0.95.
vVio V10

Thus, we say that E[M] € [41.698,42.160] with confidence 95%. The increase in the width of the confidence interval,
when compared with the estimate of 9.7, is due to the uncertainty in the estimate of the standard deviation.

We can also get confidence intervals on the sample variance of a normal distribution. The sample variance,
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based on the sample random variables X1,...,X,, is
1 n
_ _ 2
V, = n_lz(xk M,)?,
k=1
where M,, is the sample mean. We know that the random variable Y = % has a chi-squared distribution

with n — 1 degrees of freedom. To find a 1 — « confidence interval, we look at the CDF of Y ~ x(n — 1) to
determine thresholds t1,t5 > 0 such that

PUY <t} =a/2]; PH{Y <t}]=1—a/2.

This guarantees that

o~

(n—1)

Pl{t; <Y < t5}] = P[{t; < bl =1-a

2
o
We can take inverses to obtain
1 2 1 —1)o? —1)o?
P{—>—7 _ >_")= p[{u > 02> U}].
1 (n—1)02  t2 ty ta

9 (n—1)o2 (n—l)ﬁ].

as | - .

This gives a (1 — «) confidence interval for the true variance o

Example 9.10

For the problem of example 9.5, n = 10 and the sample variance is 0.0807. To obtain a 95% confidence interval, we
compute the thresholds ¢1,t2 for « = 0.05 using Microsoft Excel or MATLAB, and obtain t; = 2.700,t2 = 19.023. This
yields a 95% confidence interval that the true variance o € [0.038,0.269]. Our sample variance is in this interval, but the
interval is large, as n is small.

9.4 Significance Testing based on Sample Statistics

In significance testing, we are interested in determining whether a set of observations show effects that differ
significantly from those expected from a nominal model. The nominal model is our null hypothesis Hy, which
describes the nominal probability distribution function of the observations. For simplicity, assume Y to be
a continuous random variable described by a probability density function fy g, (y). We observe a sample
of that random variable, and we are interested in determining whether the sample of the random variable
is consistent with the assumed distribution fy |z, (y). In contrast to binary hypothesis testing, there is no
alternative hypothesis H; with a similar probability model for Y. Instead, the alternative is that Hy is not
the correct hypothesis. The question answered by significance testing is whether the observed value of Y is
consistent with the hypothesis Hy, or whether the value is inconsistent, so that the hypothesis that Y was
generated according to Hy should be rejected.

The types of error that one makes in significance testing are denoted as Type I and Type II errors. A
Type I error occurs when we reject the null hypothesis, declaring that the observed value of Y is inconsistent
with the null hypothesis, even though the data was generated according to Hy. This error is a false positive,
or a false alarm, using our nomenclature from Chapter ??. A Type II error occurs when we declare that
the observed value is consistent with the null hypothesis, even though it was not generated by a density
corresponding to the null hypothesis. This type of error is a false negative, or a missed detection.

To design a test of significance for the null hypothesis, we start with a value of «, called the level of
significance. We want to design a test such that the probability of false alarm is less than or equal to a. To
do this, we select a set Ry C R of values such that P[{Y € Ry|Ho}] = . The significance test declares the
value is inconsistent and rejects Hy if Y € Ry, and fails to reject Hy if the observed value Y ¢ Ry.

There are many ways of selecting the set Ry that satisfy P{Y € Ro|Ho}] = a. The two most common ways
are one-sided tests and two-sided tests. For a typical one-sided test, let Iy g, (y) denote the cumulative
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distribution function of the observation Y conditioned on the null hypotheses. We select a value ¢, such
that Fy g, (ta) = 1 — o, and select Ry = {y > t,}. One-sided tests are appropriate for evaluating when the
observed value of Y is too large to be consistent with the null hypothesis. In this case, « is the probability
of a Type I error, namely, a false alarm. Although these tests appear to focus only on rejection of Hy for
values that are too high, we can extend this to values that are too low by considering the observation —Y
instead of Y.

A two-sided test is designed to test whether the observed random variable is either too high or too low
to be consistent with the null hypothesis. Define t;,t; as follows:

(07

[0
Fyim(t) = 53 Fyim(tn) =1 - 5.

Define the reject set as Ry = {y : y < t; or y > t,}. Then, P{Y € Ro}|Ho] = a.

Given an observation Y = yq, the p-value of y is defined as the probability, under the null hypothesis,
that you will observe a value as extreme or more extreme that yy. For a one-sided test, the p-value is defined
as 1 — Fy g, (yo). For a two-sided test, the definition is more nuanced, and depends on the specific nature of
the CDF Fy g, (y0); one definition is 2 min (FY|HU (v0), 1 — Fym, (yo)). If the p-value is smaller than «, the
null hypothesis is rejected. This is a different way of implementing the hypothesis test that does not require
computing the inverse of the CDF Fy |y, (y) to obtain a threshold.

Example 9.11

Our probability model for how late the Green Line is in arriving at its scheduled stop on St. Mary's street is that Y, the
delay time in minutes, is an exponential random variable with rate parameter A = 0.5, so that the expected delay time
is 2 minutes. This is our null hypothesis. We are going to measure the observed delay time Y, and we want to design a
significance test for hypothesis Hy at a confidence level of 1 — a = 0.95, looking for evidence that the null hypothesis is
inconsistent with the observed data if the measured delay time is too large.

The appropriate test is a one-sided test, as we are looking for delays that are too large to be consistent with the null
hypothesis. Using the properties of exponential random variables, the probability distribution function of Y is

0 y<0
Fy|ny(y) = {1 —e 0y s

We want to define the reject set Ry = {y > to.05} for some threshold value to.05 that gives a confidence level of 0.95.
Hence, we want Fy g, (to.05) = 1 — a = 0.95. Thus,

e 051005 — (.05 = tg.05 = 5.9915.
Hence, our test of significance is Y > 5.9915, defining the region of measurements for which the null hypothesis is rejected.

For any measured value Y =y, its p-value is computed as 1 — Fy g, (y) = e %% If the p-value of the measurement
is less than the desired significance level @ = 0.05, the null hypothesis is rejected.

As the above example illustrates, the key to designing a test of significance is to identify the conditional
probability distribution of the test statistic ¥ under the null hypothesis Hy. Using this conditional PDF
Fym,(y), we can compute thresholds for the appropriate significance level, and determine the p-values of
measured test values Y = y.

9.4.1 The One Sample Z-Test

Consider the null hypothesis that the random variable X is a Gaussian random variable with known mean p
and variance o2. As an observation, we collect n independent observations of X, and want to accept or reject
the hypothesis that the measurements were generated according to the null hypothesis. The one-sample Z
test consists of determining whether the batch of n measurements is consistent with null hypothesis.
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To make the decision, we use the sample mean of the observations as the statistic Y for the test. Thus, we
test the hypothesis that the sample mean of the n observations X7, ..., X,, is consistent with the assumption
that the observations were generated according to the null hypothesis.

This type of hypothesis test is known as a one-sample Z-test. Under the null hypothesis Hy, the sample
2
mean M, = %22:1 Xy is a Gaussian random variable with mean p and variance 2-. We want to design
a test with a level of significance « that the sample mean is different from pu. The appropriate test is a
two-sided test, as the sample mean can be either too large or too small.
The random variable Z = w, referred to as the Z-statistic, is known to be a standard Gaussian

random variable with mean 0 andovariance 1. Given the value M,, = f[i,,, the resulting Z-statistic is z =
M The hypothesis test can be expressed in terms of the Z-statistic, as we want to find a threshold Ty, 5
so that P[{|Z| > T, /2}] = @, which is the same problem as finding a 1 —« confidence interval for the estimate
M,,. The threshold is computed the same way: we find the value T, /5 so that ®(=T,/2) = Q(Ta/2) = /2,
or equivalently ®(T,/2) = 1 — a/2. For instance, if o = 0.05, then T,/ = 1.96. Then, if |z| > T,/5, the
observations do not support the null hypothesis at a level of significance «.

An equivalent way of implementing a Z-test is to compute the p-value of the sample mean M, or
equivalently, the Z- statistic. The p-value of a measurement is the probability of getting a measurement
value that is more extreme than the current measurement. With a two-sided test and a Gaussian null
hypothesis, the p-value of Z = z is ®(—z) + (1 — ®(z)) = 2®(—|z|). If the p-value is less than the level of
significance «, then the evidence indicates that the null hypothesis can be rejected at that level of significance.
The advantage of this approach is that we don’t have to compute the inverse of the standard Gaussian CDF
® to compute a threshold.

Example 9.12

Assume that a probabilistic model for the weight of a randomly selected male person in the US is a Gaussian random
variable measured in pounds, with mean 195, and standard deviation 30. We believe that Canadians have the same weight
distribution, so we designed an experiment to weigh 100 randomly selected Canadian males, and compute their average
weight, denoted as W,,e. Design a statistical test with significance level 0.01 to determine whether the measured Wy
supports the null hypothesis that the weight of Canadian males has the same probability model as the weight of US males.

The measured random variable is W44, which is the average of 100 independent samples of Canadian male weights.
To answer the question, we need to compute the probability distribution of W,,. under the null hypothesis, given that

L
100

Under the null hypothesis, the W;'s are independent Gaussian random variables, with mean 195 and standard deviation 30.

Wave = (Wl +W2+---+W100).

The Z statistic for this problem is Z = 10(Wave=195 " \Nje want to define a two-sided test to accept or reject the null

hypothesis with significance level 0.01, we are looking for a threshold Ty.005 such that, if |Z| > Tb.005, we will reject the
hypothesis with significance level 0.01.

Thus, we need to select To.005 such that Q(75.005) = 1 — ®(Tp.005) = 0.005; this implies 7p.005 = 2.576.

We reject the null hypothesis with significance level 0.01 whenever |Z| > 2.576, or equivalently the average weight
difference |Wawe — 195] > 7.728 pounds. Note the effect of selecting a sample size of 100 persons had in reducing the
standard deviation of the test statistic Woye. If we had weighed 9,000 Canadian males, the threshold would be much
smaller, as the standard deviation of the sample mean would be 1, and now a smaller difference in average weight would
be significant.

For this problem, we can compute the p-value of a measured Wy, = W, by computing P[{|Wave — 195 > 195 —
W|}|Ho] as the probability that the null hypothesis would yield a measurement more extreme than W. This yields a
p-value for W of QQ(M).

Example 9.13

The lifetime of a certain cell type has been determined to be distributed according to a Gaussian distribution with mean
1570 hours and a standard deviation of 120 hours. You perform an experiment and measure the lifetime of 100 cells, and
compute a sample mean lifetime of 1600 hours. Is the sample mean you measure significantly different from the population
mean at a significance level of 0.057



9.4. SIGNIFICANCE TESTING BASED ON SAMPLE STATISTICS 211

The Z statistic is z = 7‘1(“)(1(1328_157@ = 2.5. The p-value of z can be computed from Appendix C as 2¢(—2.5) =

0.0124. Since the p-value is less than the significance level, we can reject the null hypothesis that the experiment lifetimes
were sampled from a N (1570, 14400) distribution.

When the underlying null hypothesis is not a normal distribution, we can still use Z-tests provided that
the number of samples n is sufficiently large (e.g. greater than 30). This is because the Z statistic will have
an approximately Gaussian distribution, according to the Central Limit Theorem in Chapter ?77.

9.4.2 The One Sample T-Test

In the One Sample Z-Test, the null hypothesis assumed that both the mean and the standard deviation
were known. In many applications, these parameters are rarely known. We discuss a different test, where
we know the mean but not the standard deviation of the null hypothesis.

As in the Z-Test, we collect n observations of a random variable X, which is assumed under the null
hypothesis Hy to be Gaussian, with known mean g, but with unknown variance o2. We would like to test
the hypothesis that the sample mean M,, = %ZZZI X} is consistent with the null hypothesis at a level of
significance «.

Note that we don’t have a well-specified PDF for the sample mean. We know that E[M,,|Hy] = p, and
I, Ho () is Gaussian, but we don’t know its variance. Let’s compute the sample variance V;,, and the
sample standard deviation & = /V,, as described earlier. Then, transform M,, to a new random variable
known as the T-statistic, as

If the null hypothesis is true, T is distributed according to a Student’s t-distribution with n — 1 degrees of
freedom, as shown in Section 9.3. Thus, we know fp|x,(t), and can perform a test of the null hypothesis
with level of significance «.

The Student’s t-distribution PDF is symmetric about 0. We use a two-sided test, so we compute threshold
tay2 80 that Fpig,(—ta,) = a/2. Then, our decision rule is: if |T| > t,,, we reject hypothesis Hy at a level
of significance a. Otherwise, we don’t reject hypothesis Hy.

Equivalently, we compute the p-value of the computed T-statistic T = ¢, as p = 2x F(—|t]). If p < «, we
can reject hypothesis Hy at a level of significance a.

Example 9.14

Consider the problem of example 9.13, except that we don’t know the true standard deviation o2 of the lifetime of the
cells. You perform an experiment and measure the lifetime of 100 cells, and compute a sample mean lifetime of 1600 hours
and a sample standard deviation of 120 hours. Is the sample mean you measure significantly different from the population
mean at a significance level of 0.057

Compute the T-statistic:
Vn(M, —1570)  10(1600 — 1570)
o 120

The distribution of the T statistic is a Student’s t-distribution with 99 degrees of freedom. Looking up the p-value for 2.5
in either MATLAB or Microsoft Excel, it is 2 - 0.00703 = 0.01406, which is less than 0.05, so the results support rejecting
hypothesis Ho with a level of significance 0.05.

Similarly, the threshold t¢.025 is 1.984. Since 2.5 is greater than that threshold, the results support rejecting hypothesis
Hy.

Suppose we approximated the T- statistic distribution by a standard Gaussian distribution. What would be the
corresponding threshold tg.0257 We have computed this to be 1.96. We see that the threshold using the correct distribution
is slightly larger.
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9.4.3 Two Samples T- and Z-tests

In one sample tests, we want to evaluate the null hypothesis that a collection of observations is consistent
with a prior probability model. In two sample tests, we are interested in evaluating the null hypothesis that
two sets of observations are consistent with a common probability model. We begin with the two-sample
Z-tests.

Assume we have two Gaussian random variables X,Y, where X ~ N(ui,0%), and Y ~ N (pg,02).
Assume we collect a set of n; independent samples X, ..., X,, of X, and ny independent samples Y7, ..., Yy,
of Y. We want to test the null hypothesis that 1 = po with a level of significance a.

The sample mean of the first set, Mg) = n% wL, Xk, is a Gaussian random variable with mean fi

2
. - 2 . .
and variance % Similarly, the sample mean of the second set, MT(LQ) = n% 222:1 Y. is a Gaussian random

2
variable with mean s and variance % Random variables Mr(i), Méi) are independent.

Under hypothesis Hy, the difference Mr(i) — Mg) is a Gaussian random variable with mean 0 and variance
2

2
% + %’ as it is the difference of two independent Gaussian random variables. We define the Z-statistic as

1 2
MY @

2 2
of 4 o8
ni na

Under Hy, Z is a Gaussian random variable with mean 0, variance 1. To evaluate Hy with a level of
significance «, we perform the same test as before: Compute the test statistic Z = z based on the data.
Then, compute threshold ¢,/, such that ®(—t,/2) = «/2, and determine whether |z| > t, /5. If it is, reject
the null hypothesis Hy with level of significance . Equivalent, compute the p-value p = 2®(—|¢|) and reject
the null hypothesis with significance level « if p < a.

7 =

Note that we don’t need to know the values of ;1 = s to conduct this Z-test. However, we do need to
know the standard deviations of the two sets o1 and o5.

What if the variances 0%, 03 were not known? We can use a simple generalization of the one-sample

My(Ll)—M@)

n

T-test when the unknown variances are assumed to be the same. We know ﬁ is a standard Gaussian
og- 4 o=
n1 n2

(1) (2)

v, v,
random variable. We also know that (n; — 1)—23- + (n2 — 1)—2% is a chi-squared random variable with

n1 + no — 2 degrees of freedom. Then, the T-statistic can be defined as

(1) (2)

T — ni na

./ L L
o n1+n2

where

o =DV (g — DV
n+no—2

is the pooled variance.

The T- statistic has a Student’s t-distribution with n; + no — 2 degrees of freedom, and can now be used
to accept or reject the null hypothesis with a desired level of significance.

When the variances are unequal and unknown, one can derive a more complex test with approximate
numbers of degrees of freedom, known as Welch’s t-test. This results in T-statistics that have fractional
degrees of freedom. The details can be found in statistics books or in Wikipedia.

Example 9.15

To investigate the effect of a new hay fever drug on driving skills, a researcher studies 24 individuals with hay fever: 12
who have been taking the drug and 12 who have not. All participants then entered a simulator and were given a driving
test which assigned a score to each driver as summarized in the table below:
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Control | 23 15 16 25 20 17 18 14 12 19 21 22
Drug 16 21 16 11 24 21 18 15 19 22 13 24

We want to test the null hypothesis that the drug has no adverse effects in decreasing the average score of the drivers with
a lever of significance 0.05. We compute the sample mean and variance for the two groups as M) = 18.5, M® = 18.33,
V) =15.18, V(® = 17.88. We assume the variances are the same, since the sampled variances are similar, and compute
the pooled variance as 5% = 16.53. Given the mean values, the resulting pooled variance, and the number of samples
ni,nz, the value of the T-statistic is 0.1004. The one-sided p-value of this T-statistic with 22 degrees of freedom is 0.46,
which is much higher than the desired level of significance of 0.05. Thus, we fail to reject the null hypothesis and are 95%
confident that any difference between the two groups is due to chance variations.

The two-sample T-tests and Z-tests depend on the assumption that the distribution of the underlying
random variables from which the samples are generated is Gaussian. When that assumption is violated, we
can still apply the T-tests and Z-tests as appropriate when the number of samples in each group ni,no are
sufficiently large (greater than 30) so that the Central Limit Theorem allows us to use Gaussian distribution

approximations for the sample means Mlel), M,(é)
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Chapter 10

Machine Learning and Data Science
10.1 Introduction

In the previous chapters, when discussing problems of detection or estimation, we have assumed that we
know the joint distribution (PMF or PDF) that describes the relationships between the random variables.
In detection, we used the conditional distributions of the observed data given various hypotheses, as well as
the prior distributions on the hypotheses, to design algorithms that selected the best among the hypotheses
based on the observed data. In estimation, we used the joint distribution of the observed and unobserved
data to predict the value of the unobserved variables, based on the observed variables.

We have also covered discussed foundational concepts in statistics, based on estimating parameters from
observed data. We focused on the sample mean of a random variable, based on a set of independent,
identically distributed samples of that random variable. We showed that the sample mean is a good estimator
of the true mean in this case, and developed interesting bounds on how many samples we need to get a “good
enough” estimate of the true mean with high probability.

In this chapter, we provide a short introduction to the field of machine learning. Roughly speaking,
machine learning is about making inferences such as detection or estimation, without knowing the joint
distribution of random variables involved. Instead of knowledge of the distributions, we have training data
that we claim represents independent, identically distributed samples generated by the same experiment.
Using this data, machine learning algorithms design detection and estimation algorithms. The “learning”
occurs by using the provided data samples to design detection or estimation algorithms.

In machine learning, we speak of two types of learning: Supervised learning and unsupervised learning. In
supervised learning, the data provided includes samples of both the observations and the hypothesis labels.
The machine learning algorithm can use the labels to learn an appropriate decision or estimation rule. In
unsupervised learning, the data consists only of samples of the observations, without labels. The machine
learning algorithm will have to uncover important features of the data and appropriate classes on its own.
In this chapter, we will focus primarily on supervised learning, although we will discuss techniques such as
clustering and principal component analysis that are used effectively in unsupervised learning.

The problem of classification in machine learning is equivalent to the problem of hypothesis testing in
chapter 6. In these problems, the observations X can be discrete, continuous or a mixture of discrete and
continuous variables, and the labels Y are a discrete hypothesis label. Similarly, the problem of regression
is estimation 7 in a machine learning context. Here the observations are again random vectors of different
types, and the label variable Y is a real number or vector that we are trying to estimate.

10.2 Learning probabilities from data

Suppose we were interested in “learning” a classifier for binary hypothesis testing problem. The design
theory of Chapter 6 suggests that what we need to know are the likelihoods for the observation data X
under both hypotheses. Assuming the observations are continuous random vectors, we need knowledge of
Ixm,(2) and fx|m, (z). Knowing these, the decision rule consists of forming the likelihood ratio £(z) and
comparing this ratio to a threshold, a design parameter that we choose.
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In machine learning, the likelihood functions are not known. Instead, we are given training data for each
hypotheses, of the form
(&1, HO)v AR (gnov HO); (Qno-t,-l’ Hl)v R (gm H1)7
where each data observation z, is associated with a label that indicates whether this data was sampled
from the likelihood fx|m,(z) or fx|m, (z). The data X are the observed features, and are assumed to be
d-dimensional vectors in R¢. Our goal is to learn approximations to the likelihoods Ixm,(z) and fxm, (z).

There are two types of approaches for estimating densities from data: parametric and non-parametric,
which we describe below.

10.2.1 Parametric models

The parametric approach for machine learning assumes that we know the family that the densities fx|#, ()
or fx|m, (z) belong to. For instance, we assume that the densities are jointly Gaussian, with unknown means
Hos by and unknown covariances ¥ o, 1 respectively. The idea behind parametric density estimation is to use
the training data to estimate the unknown parameters of the likelihood functions. The parameter estimation
problems are straightforward, and use the maximum likelihood estimation algorithms described in Chapter
7.

Specifically, assume we are given n independent observations of a random vector X € R¢, denoted as
Zy,...,%,. We assume that the joint PDF of X is one of a family of PDFs, parametrized by unknown
parameters 6, so that fx(z) = g(z,8). For instance, the function g(-) can be the joint density of a d-
dimensional Gaussian random vector, with unknown mean and covariance matrix, which form the vector
of unknown parameters . Based on the data, we estimate these parameters using an estimation algorithm

such as maximum-likelihood, so that
n

= argmos [T oz
LA

The resulting approximate PDF of X is then fx(z) = g(z, E) We illustrate this with examples below.

Example 10.1

We have two hypotheses we are trying to detect, based on a scalar Gaussian observation. Specifically, under hypothesis
Hy, the observation X is a Gaussian random variable with mean 0, variance 4. Under H1, it is a Gaussian random variable
with mean 5, variance 4. Using the theory of Chapter 6, the maximum likelihood decision rule for this problem is

Hi z>25

Dyir(x) = {Ho v 95

and the probability of error in this detector is Q(1.25) = 0.106.

Now, assume we did not know the parameters of the Gaussian distribution, but instead are given 1000 samples (z;, y;),
where y; € {Ho, H1}, from each of the two distributions, fx|m, (), fx|m, (). We assume the first 1000 samples come
from Hy, and the second from H;. We refer to the values x; as the data, and the values y; as the labels.

The vector of unknown parameters in the densities is § = [mno, m1,02], corresponding to the unknown means and the
common variance of the conditional densities fx|x, (), fx|#, (x). The parametric form of the likelihood function for each

hypothesis is:
1 _ (x—my, )2

fX|Hk(‘T)Egk(I7Q):W6 %2, k=01

Using this and the fact that each of the data samples is independent, we can write the estimation problem as

. 1000 2000

6 = argmax [ [ go(25,0) [[ 91(=;,0)
2] P .
[ j=1001

We can maximize the logarithm of the right-hand side as a simplification, to obtain

2000

~ In(270?) (x5 — mo)? In(270?) (x5 —ma)?
f=argmax) (- =5 - ) X (T e )
[ j=1001
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Differentiating with respect to mg, m1 and o2 and setting the results to zero yields the following values for the maximum
likelihood estimates:

1 000 1 2000
’f)\’Lo = — Tiy T/T\Ll = — Z X;
1000 & 1000 , <=

Since we assume the variances of the two densities are the same, we estimate the joint variance as

1 1000 2000
52 = m(Z(xj — o) + .Z (s —M1)?).
1=j 7=1001

With these estimates, we can approximate the conditional densities fx|m, (), fx|#, (x), and implement an optimal
maximum likelihood decision rule, which results in:

H1 X > 7777.1+ﬁ10
Dyp(x) = -2
(@) {Ho otherwise.
and we predict our probability of error to be i i
p p y Q=)

We implemented the above problem in a Python script described below:

import numpy as np

X0 = 2#np.random.randn(1000,) #generate HO train data
X1 = 2#np.random.randn(1000,1) .ravel()+5 # H1 train data
test0 = 2*np.random.randn(1000,1) .ravel() #HO test data
testl = 2*np.random.randn(1000,1) .ravel()+5 #H1 test data
m0 = sum(X0)/1000.

ml = sum(X1)/1000.0

var = (sum((X0 - m0)**2)+sum((X1 - m1)*x2)) /2000.0

T = 0.5%x(m1 + mO)

Pe = (sum(test0 > T) + sum(testl < T))/2000

print (mO,ml,var)

print(T,Pe,T/np.sqrt(var) )

and obtained the following estimates:
Mo = —0.018; My = 4.906; &2 = 4.135.
Based on these estimates, the threshold in the decision rule is 2.462, and the predicted performance is Q(1.21) ~ 0.101.
We generated 2000 additional samples as test data, and evaluated the empirical performance of our detector on the

test data, as the script indicates. The empirical probability of error was P. = 0.105, which is a bit higher than predicted,
because the estimated models from the training data are different than the actual models used to generate the data.

In this example, we generated lots of data to estimate 3 unknown parameters: 2000 independent samples.
We will see that this complicates the problem when we deal with larger numbers of unknown parameters.

10.2.2 Nonparametric Density Estimation

Can we estimate the likelihoods fx|m,(2), fx|#, (z) without assuming a parametric form? There are nu-
merous techniques that attempt to do this. The problem of non-parametric density estimation can be
summarized as follows: given N independent samples z;,,k = 1,..., N of an n-dimensional random vector
X with PDF fx(x), generate an estimate of the probability density function for all values x € R™.
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One approach is to construct an empirical probability mass function based on the observed samples, as
follows:

13(95)— 0 z#uz forsomeke{l,...,N}
o i z =g, for some k € {1,...,N}.

Unfortunately, this is a discrete probability mass function, and not a density. Furthermore, it assigns zero
probability to obtaining any data values that are not in the training set z,,k=1,..., N.

The approach we propose for generating a better density estimate is kernel density estimation (KDE),
which is a version of the Parzen’s window estimator. KDE is a nonparametric density estimator, requiring no
assumption that the underlying density function is from a parametric family. KDE will learn the shape of the
density from the data automatically. The idea behind KDE is to blur the empirical probability mass function
using a smooth kernel so that the probability mass function is extrapolated to a density that has range on
values that were not included in a training set. Kernel density estimators smooth out the contribution of
each observed data point over a local neighborhood of that data point.

Define a kernel K (z) to be a smooth non-negative function with a peak at z = 0, such that [ K(z) dz = 1.
We can interpret the kernel as a probability density function, as it satisfies the non-negativity and normal-
ization properties of probability densities. For most applications, we use standard Gaussian kernels, of the
form

1 _zls2
Kn(z) = WB )

which is the product of independent Gaussian densities with zero-mean and standard deviation h in each of
the n dimensions of X. The parameter h is known as the kernel width.

With this kernel, the KDE approximation is

N 1 &
Fx(@) =5 D Knlz — )
k=1

Note that, for an arbitrary point z € R", the density will be determined primarily by the data points
that are within a distance of 3h of . The quality of a kernel estimate depends strongly on the value of its
bandwidth h. It’s important to choose the most appropriate bandwidth as a value that is too small or too
large is not useful. Small values of h lead to very spiky estimates (not much smoothing) while larger h values
lead to oversmoothing.

Example 10.2

Let's approximate the density of a Gaussian random variable X with mean 0, variance 1 using KDE. We select 100
independent, randomly generated samples of X, and we show the resulting KDE densities using different values for the
width h in the figure below. We see that for values h = 0.1, the approximate density is too rough. For h = 0.4,0.5, the
density approximation is accurate. For h = 0.6,0.7 we see the density is oversmoothed.
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Figure 10.1: A multi-modal density where the standard deviation is not representative of the curvature. Red
indicates the KDE approximation to the true density in blue.

There are many approaches to selecting the right value of h. A rule of thumb, known as Silverman’s
1

rule, is based on approximating Gaussian densities, and is given by h = %) * ~ 1.066N~Y5. If we

evaluate this for the example above with N = 100 and ¢ = 1, we get h =~ 0.42. However, this rule can
often be wrong if the density has multiple peaks. For instance, consider the density in Figure 10.1 below.
Silverman’s approximation yields an h that oversmooths the density, as the estimated standard deviation is
more reflective of the spread in the two peaks than the curvature of the density. A different rule that reduces
h by an order of magnitude yields an excellent approximation. In general, one selects h using a search that
involves some form of cross-validation, where part of the data is used to estimate the density and another

part is used to validate that the estimated density is accurate.

KDE can be integrated into classification problems with supervised learning. Given samples of X gen-
erated independently by fx|g,(z), we can construct a KDE estimate fx|g,(2) of this likelihood function.

We can similarly construct a KDE estimate f& m, (z). With these two estimates, the maximum likelihood
decision rule is
~ Hy f z) > f; z
DML(Q) _ 1 f£|H1(7) = f&\Ho(f)
0 otherwise.
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The main limitations of KDE estimators are two-fold. First, for high-dimensional data, it is hard to inter-
polate accurately. The number of data points required grows exponentially with the number of dimensions.
Second, the complexity of the classifier is large: one has to compute the kernel distance to all the training
points, which can be slow as the number of training points increases. We will show the performance we can
achieve with KDE estimation on a real classification problem, described in the next section.

10.3 The IRIS data set

As a motivating application, we use a particular data set that was used by the father of modern statistics,
Ronald Fisher. In addition to his work on statistics, Fisher was a mathematical biologist and applied statistics
to maximum likelihood classification problems. This particular data set was reported in a paper in 1936,
“The use of multiple measurements in taxonomic problems as an example of linear discriminant analysis.”
The data was collected to quantify the morphologic variation of Iris flowers of three related species. Two of
the three species were collected from the same pasture, picked on the same day and measured with the same
apparatus. The IRIS data set is widely studied, and copies of it are easily downloaded on the internet.

The data set of 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor).
Four features were measured from each sample: the length and the width of the sepals and petals, in
centimeters. Based on the combination of these four features, Fisher developed a linear discriminant model
to distinguish the species from each other. This discriminant is still referred to as Fisher’s linear discriminant.
The three types of flowers are shown in Figure 10.2.

Figure 10.2: The three types of iris flowers in the IRIS data set.

The four features in this data correspond to the sepal length in centimeters, the sepal width in centimeters,
the petal length in centimeters and the petal width in centimeters. The petal and sepal leaves of an iris
flower are shown in Figure 10.3.

To illustrate the properties of this data set, we performed a statistical analysis using the Python Seaborn
package, that shows a kernel density estimate for the marginal densities for each of the four features as well
as plots showing pairs of features, color coded to each of the iris varieties. This output is shown in Figure
10.4. This exploratory analysis shows that it will be relatively easy to separate the Setosa variety from the
other two varieties, because of its smaller petals, but it will be harder to separate the other two varieties.

Example 10.3

We use the IRIS data set to evaluate the performance of parametric max-likelihood classifiers and explore some of their
limitations. The observations in the IRIS data set are 4-dimensional vectors. There are three hypotheses, which we denote
as Hy (Setosa), Hy (Versicolor) and H» (Virginica). We only have 50 observation samples per hypotheses. We assume that
the densities fx |, (2), fx|m, (2), fx|H, (2) are joint Gaussian densities, with means Hoo Fys ey respectively and a common
covariance matrix 2. Note that the number of parameters required to estimate the densities is three four-dimensional
means and a four-by-four symmetric covariance matrix, leading to 4 x 3 + 10 = 22 unknown parameters to be estimated,
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Figure 10.3: Names of leaves of iris flowers in the IRIS data set.

with 150 four-dimensional measurements. This is limited data for a problem with that many unknown parameters, and we
can expect difficulty in estimating the densities accurately.

We assume the data provided is in the form {(z,,yx)},k = 1,...,150, where yi € {Ho, H1, H2}. The estimate of
each of the class means is obtained using maximum likelihood estimation as

150
i, = OZxk =ty §=0,1,2,
where I, is the indicator function which is 1 when z is true, and 0 otherwise. The covariance estimate is generated by

150

1;0 <nyk H(z, — )(mk—ﬁj)T)

We implemented the above equations and obtained the following estimates:

5.006 5.936 6.588 0.261 0.091 0.165 0.038
. 3428 277 | . |20974] < 0091 0.114 0.055 0.032
Bo=11462| B = | 426 | " %2~ [5552]° == |0.165 0.05 0183 0.042
0.246 1.326 2.026 0.038 0.032 0.042 0.041

With these density estimates, we implemented a maximum likelihood classifier. On the training data, the performance
of the classifier had a probability of error of 0.02. We subsequently broke the training data so that 70% of the data was
used for training, and 30% was used for testing. The probability of error went up to 0.044, which is still very good given
the limited amount of training data.

Example 10.4

We return to the IRIS data set, but using the KDE nonparametric estimators discussed previously to approximate the
likelihood functions for each of the three species of iris flowers. For this problem, we can always get zero probability of error
on the training data by selecting a small value of h, since this will put all the weight on the actual data point being tested,
which is part of the training set. Thus, we divided the data into 70% training, 30% testing and evaluated the performance
of the KDE maximum likelihood classifier described above. On the test data, our probability of error was 0.044, which is
the same as the parametric estimator discussed in Example 10.3.
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Figure 10.4: Seaborn pairs analysis of IRIS data.

10.4 Binary Classification

In this section, we focus on describing various machine learning approaches to the problem of selecting one
of two hypotheses. This problem is a generalization of the binary hypothesis testing problem, to the case
where we don’t have probability models for the observations conditioned on the hypotheses. Instead, we
are provided sample observation values that are obtained under each of the two hypotheses. Our goal is to
design a decision rule that maps new observations into a selection of which hypothesis is best.

The binary classification problem has two hypotheses, Hy and H;. To simplify notation, we associate
the decision value —1 with Hy and +1 with H;. We observe a vector of features X with values in ®?, and

we want to design a decision rule D(z) that maps the observed vector X = z into one of the two decisions

Assume we are given training data of the form (X,,Y1),...,(X,,,Y,)}, where X, € R?¢ is a sample

observation value, and Y3 € {—1,+1} is the label that indicates which of the two hypotheses generated
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that observation. The decision rule D(z) assigns a label of —1 or 1 to each possible observed vector . We
typically measure the performance of a decision rule by the error rate, which is the probability that a point
is misclassified. Since we don’t have probability models readily available, we compute this as the fraction of
sample values that are misclassified, as we will show later.

O versicolor
O  virginica

6.5

Petal length, cm
o

3.5

4.5 5 5.5 6 6.5 7 7.5 8
Sepal length, cm

Figure 10.5: Sepal length versus petal length for two types of Iris flowers

Figure 10.5 plots a pair of features, sepal length and petal length, for two types of iris flowers, Versicolor
and Virginica. The figure also shows a potential decision rule, indicated by a straight line. For data points
above the line, the decision rule declares that flower type is Versicolor, whereas for data points below the
line, the decision rule declares that the flower type is Virginica. The figure highlights the five data points
where the decision rule makes errors, by including a black rectangle among the points.

In this section, we describe various approaches for designing binary classifiers using labeled training data
and supervised training.

10.4.1 Clustering Classifiers

Assume we are given training data of the form (X;,Y7),..., (X, Y,)}, where Yy, € {Hy, H } is a categorical
label. Given this labeled data, it is straightforward to compute the average observation under each hypothesis

as:
n n
S Xelvien, - S Xy,

o mn ) Hl mn
Zk:l IYk:HO Zk:l IYk:Hl

The clustering classifier assigns to an input value z the decision that has its average closest to the input
value. That is,

D(SU) _ HO? Hl—ﬁo H < ”X_ﬁl ||
Hy, | X—Fol =l X—7|

Note that the clustering classifier is easy to extend to K hypotheses, as long as training data is provided
for each. Furthermore, the classifier can be extended to unsupervised classification, by analyzing the data
using a clustering algorithm and discovering the clusters in the data.

The clustering classifier is computed in Figure 10.6 for the two length features for the IRIS data set,
for the classes Versicolor and Virginica. The two class centers are shown as filled diamonds in each of the
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classes. Looking at the results, we see that 15 out of the 100 data samples are classified incorrectly, for an
error rate of 15% when evaluated using the training data.

o
O versicolor
O virginica & o

6.5

Petal length, cm
o &

bl
2]
:

3.5

4 4.5 5 5.5 6 6.5 7 7.5 8
Sepal length, cm

Figure 10.6: Illustration of clustering classifier

10.4.2 Nearest Neighbor and K-Nearest Neighbor Classifiers

Nearest neighbor classifiers are similar to clustering classifiers, but involve more computation. In clustering
classifiers, the trained classifier only needs to remember the average values estimated for each class. In
contrast, the classifier for nearest neighbor classifiers needs to remember all the training data provided.

To classify an input z, the nearest neighbor classifier finds the training data point X, that is closest to
x, and then assigns the label of that data point to the data X. That is, one finds j* such that
|z - X,

sl <llz—X; | forallj=1,...,n

The nearest neighbor classifier is then D(z) = Yj«.

A simple extension of a nearest neighbor classifiers is to find the K nearest neighbors of the input data
z, denoted as X, ,...,X;, . The label assigned to x would be determined by the labels Y}, , ..., Y}, , usually
in majority voting. Finding the K nearest neighbors efficiently usually requires advanced data structures,

particularly when the dimension d of the data is large.

10.4.3 Discriminant Analysis

Discriminant analysis classifiers are based on Gaussian parametric approximations of the likelihood functions
Ix1H,(Z), [x|m, (z). The most common type of discriminant analysis is Linear Discriminant Analysis
(LDA), which assumes that the likelihood functions fx |z, (2), fx|#, (2) are jointly Gaussian with different
means f, jt, but with the same covariance matrix ¥. The decision rule is the maximum likelihood decision
rule with the approximate densities.
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Given training data of the form (X;,Y1),...,(Xy,Yn)}, where Y, € {Hy, H1} is a categorical label,
compute the number of samples of type Hy, Hi as ng = sumj_, X Iy, —H,,n1 = sumy_; X, Iv,—m,. Given
this labeled data, it is straightforward to estimate the means of each of the two densities, in the same manner
as we estimated the centers of the clustering classifiers earlier:

n n
~ Zk:l KkIYk:HO_ ~ Zk:l Xklyk:Hl
=" "5 MK, =— """ """

0 no 1 nq

Estimating the common covariance matrix ¥ is more involved. A common estimator is

n

> ((Kk — 1) Iyvi=m, + (X, — El)zfyk:m)
k=1

1
n—2

i:

A different way of computing the same estimate is to first estimate fo, fl as the covariances based on data
labeled as Hy or H; respectively, as:

~ 1 n .
o= Z(Kk - H0)2IY1¢:H0

no— 15
~ 1 n R
£ = o S
k=1

We can subsequently combine these into a single estimate, as

i:

~ 1
fxmy (2) = ———
o \/det(27%)

[P R

\/det(27%)

To derive the max-likelihood classifier using these likelihood estimates, we compare the log-likelihood
ratio to 0, as

In (£@) = (¢~ 5) 'S (@~ f,) — 3 (@~ 5,)" 5 (@~ )

This decision rule is a linear decision rule of the form

D(2) Hy, ifaTz >0,
xTr) =
- Hy elsewhere,

where a = f‘l@l —fi,); and b = %(Eff‘lgl - E(Z)Fi_lgo)' The LDA decision rule is similar to the closest
average decision rule, except that the distances between data and the centers are modified by the estimate of
the inverse covariance. If ¥ = I, the d-dimensional identity matrix, then the LDA decision rule is equivalent
to the closest average decision rule.

We show the LDA decision on the same two-dimensional data for the IRIS data set as before. Compared
with the clustering classifier, the decision rule has shifted the orientation of the separation line based on the
estimated covariance, and has reduced the number of errors to 5, leading to a 5% error on the training data.
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Figure 10.7: LDA decision rule for selecting between Versicolor and Virginica Iris

Instead of Linear Discriminant Analysis, we can do Quadratic Discriminant Analysis (QDA), which
is based on parametric modeling of the likelihood functions fx g, (z), fx|m, (z) are jointly Gaussian with
different means Hor 1y and different covariances Y1 and 5. Given the same training data, the estimates can

be obtained as N "
ﬁ _ Zk:l XkIYk:HO, /,d _ Zk:l XkIYk:Hl

no Tt n1

0
n n
So= 2T ; = )21
0= ”0_1,;1 — Bo) " Iyvi=Hy; - g Yi=H,-

Computing the log-likelihood ratio results in

(& — 7)) "o (2 — By) - é@ A" @ - i) + ln(de;[zo]) - ln(de;[zl])

~Te—1~ ANTS 1~ ~
~ ~ e N [T 2P T T W) 1 det[X Hy
B e T T T T L e (e [EO]> 20

In (L(z)) =

N = N
|

2 2 det[ 1]

Figure 10.8 shows the boundary of the quadratic decision rule obtained by QDA for the two feature IRIS
data set used in the previous examples. Although the empirical error rate on the training data is the same
as the LDA empirical error rate 5%, the curvature of the region is likely to improve the error rate on test
data.

10.4.4 Perceptron Classifier

Many modern approaches to binary classification use complex parametric decision functions, and use large-
scale optimization techniques to select the parameters of such decision functions. Examples of such decision
functions are neural networks, which use interconnected layers of linear and nonlinear elements with weights
to map an observed input z to a decision D(z). The training of such networks is beyond the scope of
this course. However, we will describe a simple nonlinear neural network model for classification, proposed
by Rosenblatt in 1958. It is known as Rosenblatt’s perceptron network, and is illustrated in Figure ?7.
Rosenblatt’s perceptron was an attempt to model the processing of a neuron, based on earlier work (1943)
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Figure 10.8: LDA decision rule for selecting between Versicolor and Virginica Iris

by McCulloch and Pitts. The figure shows how a vector of inputs, combined with weights is added and
passed to a nonlinear function that examines the sign and selects the hypothesis.

Inputs  Weights Net input Activation

function function
D
Rosenblatt’s
Perceptron @ @ e 9 output
(1958) &) (w,)
O
(%)

Figure 10.9: Rosenblatt’s Perceptron Model.

Training a perceptron classifier can be accomplished without the use of iterative optimization techniques.
The training is based on principles of regression: given data (X, Yx),k =1,...,n with labels Y}, € {Hy, H1 },
change the labels to numbers, where Y, = Hj is changed to Y, = —1, and Y; = H; is changed to Y; = 1.
We now have numerical data {(X;,Y1),...,(X,,,Yn)}

Let the vector a correspond to the weights wy, ..., w,, that multiply the data z, and the scalar b corre-
sponds to the weight wq that is added as a bias to the nonlinear function in the perceptron classifier. We
want to find the best linear predictor of Y from X to minimize the least-squares error:

. 1 - T 2
rg}glﬁ;(yk_g X, —b)%

This optimization is known as linear regression, and is very similar to the problem of linear least-squares
estimation, except that instead of PDFs to compute means and variances, we have sample data. Linear
regression with minimum mean square error objectives was developed by Gauss in the early 19th century to
estimate planetary orbits.

We can solve the linear regression problem using the LLSE solution of Chapter 7. Specifically, we compute
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approximately
EIX] = 1) X, EY]= ) Vi
k=1 k=1
VarlX] =%x = — i 1 > (X, —E[X])(X,,—E[X])"; Cov[V, X] = Ty x = - i ; 3 (X, ~EX])T (Vi —E[Y)).

k=1 k=1
The LLSE estimator is
Urrse(z) = E[Y] 4+ Ty xYx' (z — E[X]),

which makes the optimal regression vector a” = Ty x¥ 3" and the constat b = E[Y] — a”E[z]. This solution
yields the optimal weights to use in the perceptron classifier.

As an alternative, we can convert the weight optimization problem by optimizing for the weights w
directly, where w is a (d + 1)-dimensional vector. We do this by forming the data matrix

We often convert this to a homogeneous formulation by grouping the constant d into the estimation
vector ¢, defining the vector v = [QT d]7 so that the estimate is of the form

Y(z) = [c" d] [ﬂ =b" [ﬂ .

This gets rid of the bias term d by merging it into the unknown vector b. Note that this requires adding an
extra dimension to the observations X.

1 X; Y1
1 12 Y2
X = g = .
1 xT Yn

Note that we have added an extra column of all 1 to the data, to account for the coefficient wg in the
perceptron network. With this notation, the mean square error becomes

1
MSE = —(y — Xw)" (y — Xw).

n L Yy
This is now a quadratic vector optimization problem. We solve this by taking the gradient with respect to

b and setting this equal to zero:

VyMSE =V, ly—XwT(y—XM) _ 2xr Xw—y)=0
b ol y - y

— XTXw* = XTy

The last set of equations are known as the Normal Equations for least squares estimation. As long
as the dimension d is not very large, we can invert the matrix X X and obtain the regression solution

—1
w* = (XTX) XTQ. For large d, different approaches are used, as matrix inversion can be expensive.

When d is larger than the number of data points IV, this matrix is not invertible, and one must use a
different approach, such as computing its pseudo-inverse.

Example 10.5
Consider a 1-dimensional example of regression. The points X1, ..., X100 are uniformly spaced in the interval [-1,1]. We
generate the measurements yy, as follows:

Y = 2Xg + wi
where wj, are independent samples of a Gaussian random variable with mean 0 and variance 1. Note that we have
intentionally selected X to have average 0, and y to also have average 0, so that we can assume wo = 0. In this case, the

data matrix is a vector:
X1

Xo
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Based on the 100 values of (X, yx), we generate an estimator as follows:

N e D TR

N
2 k1 z

7J(z) = wrz, w* =

The results are show in Figure 10.10.

Figure 10.10: One-dimensional regression.

Example 10.6
Consider a 2-dimensional regression. We generate 400 sample points X} uniformly spaced in the unit square [—1, 1]2.
Each of the points X}, is a 2-dimensional vector (X1, Xx2). At each of these points, we observe the function value

Y = 2Xk,1 + 3Xk,2 + wi
where wy, are independent samples of a Gaussian random variable with mean 0, variance 1.

The results of our 2-dimensional regression for this case are shown in Figure 10.11. The linear regression estimate is
(w*)" = [2.028 3.033], which are close to the true values used to simulate the data.

10.5 Dimensionality Reduction

In machine learning classification problems, the observations often involve large numbers of variables. For
high-dimensional observations, it is hard to visualize the data and design the classifiers using either para-
metric techniques or optimization techniques. Dimensionality reduction algorithms reduce the number of
random variables under consideration, by transforming the data to a smaller set of important features.

For making inferences and other decisions, not all dimensions of the observed data are critical. Consider
images, expressed as long vectors. Certain “features” of the images are informative, but not all pixels
contain relevant information; most images have similar borders, and the variability in certain regions is
similar. Essentially, we wish to discover “features” where images differ the most and discard “features” with
little variability.

There are many methods for dimensionality reduction. In this section, we focus on one of the simplest
and most popular methods: Principal Component Analysis (PCA). PCA finds linear combinations of
the data that are uncorrelated and represent the best approximations to the variability in the data. It is
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0.5

Figure 10.11: Two-dimensional regression.

based on second order statistics (means, variances, covariances), estimated from the training data. PCA
is an unsupervised learning algorithm, as it ignores the labels in the data. It is simply trying to find low-
dimensional approximations to the total data collected. PCA was invented in 1901 by Karl Pearson. It is
also known as the Karhunen—Logve transform (KLT) in signal processing, and as factor analysis in statistics.
PCA can be thought of as fitting a low-dimensional ellipsoid in a subspace to data. Each axis of the ellipsoid
is a principal component. .

PCA has three main steps:

e Compute the sample covariance matrix of the full-dimensional data.
e Compute eigenvalues and eigenvectors of this covariance matrix.

e Select the eigenvectors associated with the largest k eigenvalues and transform your data into k-
dimensional projections onto those eigenvectors.

We describe the mathematics of these steps below, illustrating how they can be computed. The first step
is straightforward, and based on estimation results. Assume we are given data consisting of n independent
samples of a random vector X, denoted as X,k = 1,...,n. We assume that X takes values in R¢, where
d can be a large number. In many applications where the data is an image, d is often larger than n. The
sample mean of this data, which is an estimate of the true mean p 0 18 computed as:

1 n
= X
S,
k=1
Similarly, an unbiased estimate true covariance > x is computed as

n

fix)"

X =
= —1
k:l

Now that we have the sample covariance, let’s discuss the motivation for the second step: Computing the
eigenvalues and eigenvectors of this covariance matrix. To do this, we will solve an approximation problem.
Assume we wanted to project the data X, onto a one-dimensional subspace, defined by the unit vector v;.
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We do this by computing the inner product between v; and each of the X,. Define these projection as
Zr =vIX,,k=1,...,n, which are n independent samples of a scalar random variable Z = v¥ X.

The sample mean of these projections Z is

n

1

~ Ty _ T~
HZ*;E ﬂlk*hﬁg
k=1

Similarly, the sample covariance of Z is given by the unbiased estimate

n

~ ~T
0y =— Z Zy — 1iz) (2 — fiz) = — > (0] X — of i )(XFewy — fiyvy)
=1 k:l
1 < . R o
=uf (n D (X~ By ) (X - uﬁ)) v =of (Zx)u
k=1

In the original d-dimensional space, the approximation to each X, is given by V, = ﬁX + Ziv;. Ideally,

we want to select the unit vector v; to best approximate the data on this one-dimensional affine space,
by mmlmlzmg the mean-square error, defined as MSE = -3 (X, — V,)T(X}, — V). Define X, =
X, E . Then, the mean square error can be stated in terms the scalars Zj, as

- - T - T
(s — Ziw) (X — Ziwy) = —— = (X0 &y - 2%, 0,20+ 00, 22)
1 k=1

MSE =

NE

n—1
k

[
S

—
NE

> (XX 2K+ Z,f)

>
Il
—

. . . 5T
because Zj, is a scalar, and v; is a unit vector. However, recall that Z, = X v,. Hence,

n T 1 n 1 B n - T
MsE= Jk—mmm A R DI EE &Y
k=1 k=1 k=1
1 N =T =
Xk‘“lzXU1— _lziklk_A
k=1

Thus, to minimize the mean square error in the approximation, we need to select the direction v; to
maximize the covariance 5. This results in the following optimization problem:

max vy (): X)
vyl [I2=1

This is a well-studied optimization problem. The sample covariance matrix is a positive-semidefinite matrix

with all eigenvalues real and non-negative, and a full set of orthonormal eigenvectors. Ordering the eigen-

values in decreasing order, so Ay > Ay > --- > A, > 0, we select v; to be the eigenvector corresponding to

the largest eigenvalue A;. This eigenvector is called the first principal component.

Note that & XV; = A10;, so the mean square error is reduced by A;. To obtain the next principal
component, we find the unit vector that is orthogonal to v; and maximizes the sample projection covariance

ol (f &) v,. The solution of this problem is the normalized eigenvector corresponding to Ae, which is the

second principal component. When using the first two principal components as approximations, the mean
square error is reduced by A1 + Aa.

We can continue this process until we get all the d eigenvectors v, v, ..., v, of f& LetV = [yl Vg
Since the eigenvectors are chosen to be orthogonal and normalized, we have the following relationships:

T xV = Vdiag(A, A, ..., Ap); VIV =1y

|

) -
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where |, is the d-dimensional identity matrix. For dimensionality reduction, we choose the k largest principal
components, to create a projection matrix Vj = [Ql Vy ... yk] .

We can write all of the above operations in matrix notation. Let’s define a couple of matrices: an N x p
data matrix X that stacks all the data as columns in a matrix, with each row representing one sample X f
Let’s also define the n x 1 vector of all ones as 1,,. Then,

With this notation, the sample mean and covariance of X are easily computed as:

. 1 S . o
i, =-X"1,; X=X-1,4; Ix

1~T~
=2 n *”Hi’ n

X X
n

PCA then computes the eigenvector-eigenvalue decomposition of the sample covariance Y X as

1

~

Yx = Vdiag(\, ..., AV = [, ... vyl diag(Ai,... 0 |- .
vy
Usually, this decomposition is computed using a singular value decomposition algorithm, but there are many
other ways of computing this. The final step is to pick a projection matrix Vi of dimension d x k with the
eigenvectors corresponding to the k largest eigenvalues, as Vi = [Ql Vy ... yk] . We use this matrix to
project the data vectors X;,j =1,..., N to k-dimensional “feature” vectors, as

Xy educe = (X - lngg)]vk
The matrix X,cgyce is of dimension n X k, and each row j is a k- dimensional feature vector corresponding
to the original data d-dimensional sample X ;.

How do we select k7 One way is to look at the reduction in mean square error. If k& = d, the resulting
mean square error is zero, so we have reduced the mean square error by a fraction of 1. For smaller k, the
fraction reduction in means square error is H Selecting this fraction so we reduce the approximation
error to under 1% usually yields a good value for k.

To represent the approximation in the original space, we can convert k-dimensional feature vectors to
d-dimensional estimates X ; of the original data points using the following expression:

X = Xreducevz1 + ln@i

In coordinates, let Z j be the transpose of the j-th row of X,equce, Which is k-dimensional feature vector
approximation of the observation X ;. Then,

~

Xj = szj +E§'

Example 10.7
To illustrate how PCA works, we show how to approximate a 3-dimensional Gaussian with a 2-dimensional projection. The
1
random vector X is assumed to be three-dimensional, with mean My = 2| and covariance matrix
- 3
T

1 2 311 2 3
Tx=13 1 2|3 1 2
2 3 1] |2 3 1

The following MATLAB script implements a 2-dimensional PCA approximation of X.
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mu=[1; 2; 3]; Jmean % Generate Gaussian points
A=1[123;312;231];
Cov = A *x A’;

[V,D]=eig(Cov); %eigen-decomposition
% generate an nx3 matrix of samples points and plot them
n=300;

X=mvnrnd (transpose(mu) ,Cov,n) ;

scatter3(X(:,1),X(:,2),X(:,3)); xlabel(’x’); ylabel(’y’); zlabel(’z’);
sample_mu=transpose (X) *ones(n,1) /n;

[V_s,Coeff,d_s]=pca(X); hold on;

%plot eigenvectors
quiver3(sample_mu(1),sample_mu(2),sample_mu(3),V_s(1,1),V_s(2,1),V_s(3,1),15,’r’);
quiver3(sample_mu(1l) ,sample_mu(2),sample_mu(3),V_s(1,2),V_s(2,2),V_s(3,2),8,’g’);
quiver3(sample_mu(1),sample_mu(2),sample_mu(3),V_s(1,3),V_s(2,3),V_s(3,3),8,’b’);
% compute reduced 2D representation and plot these points

X_red=Coeff (:,1:2)*transpose(V_s(:,1:2))+ones(n,1)*transpose(sample_mu);
scatter3(X_red(:,1),X_red(:,2),X_red(:,3),’red’);

Jcompute approximation error per element

MSerror=(norm(X-X_red, ’fro’))~2/n

The results are shown in the figure below, where we plotted both the sample points and their approximations. The
figure includes two 3-D views. The view on the right shows that the approximations all lie in a 2-dimensional plane. The
resulting mean square error is 2.84 in the approximation.

Figure 10.12: Two views of the approximation for Example 10.7.

Example 10.8

For our second example, we consider applying PCA to the IRIS data set, with two and three principal components.
The results are shown in Figure 10.13 below. In this case, we cannot visualize the four-dimensional IRIS data and its
approximation, so we show the two-dimensional features using the first two principal components, and the three-dimensional
features using the first three principal components.

As the figures indicate, with two principal components, PCA captures 97.76% of the total variance in the data, and
with three principal components, PCA captures 99.48% of the total variance in the data.

PCA is a powerful tool when combined with parametric classifiers such as LDA and QDA. By reducing
the number of features in the data, one reduces the number of parameters which must be estimated in the
likelihood functions, and can therefore generate better estimates with a smaller number of samples.

There are several important limitations of PCA. First, PCA ignores the labels in the data, and as such,
may not find features that are best for classification. Instead, PCA find features that approximate the
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Figure 10.13: Two- and three-dimensional features for the IRIS data set.

data in lower dimensional spaces. Other dimensionality aggregation techniques such as Linear Discriminant
Analysis are focused on supervised dimensionality reduction, and find features that separate the different
hypotheses.

A second limitation of PCA is that the results depend on the scaling of the different variables. This is
because the intrinsic distance used to approximate points is the Euclidean distance. Thus, in practice, one
often normalizes each dimension of the data by an estimate of the standard deviation, so that all marginal
distributions have variance 1.

The third limitation is that PCA is focused on finding features that are linear combinations of the data.
In many feature sets, the best features may be nonlinear combinations. Extensions of PCA such as kernel
PCA attempt to address this, by finding features using nonlinear kernels instead of inner product projections.

A common criticism of the features obtained by PCA is that they are linear combinations of all the
dimensions d in the data, and hence do not provide insight into what the features mean. This is often
expressed when PCA is used on medical data. Techniques such as sparse PCA and regularized PCA have
been introduced to generate features that use only a fraction of the dimensions d.

In spite of the above limitations, PCA is broadly used as the first approach to dimensionality reduction
because of its computational simplicity and its robust performance for high-dimensional data.

10.6 Summary

Machine learning addresses problems of classification and regression, in cases where we don’t know the
probabilistic relationship between observed values X and the labels or numeric values Y that we are trying
to predict. Instead, we are provided with labeled training samples (X;,Y7),..., (X, Yn) which form the
basis for the design of classification and regression algorithms.

The algorithms discussed in this chapter comprise a small sample of the available techniques in the field.
We have focused on algorithms where the learning is simple: there are no complex training procedures
required to design the decision and estimation algorithms from training data. Thus, we avoided algorithms
such as deep neural networks and support vector machines, where finding the parameters of the algorithm
involve the solution of large-dimensional, complex optimization problems.



Chapter 11
Markov Chains

In the chapter on limit theorems, we saw sequences of random variables indexed by the natural numbers.
The underlying experiments generated sequences of independent, identically distributed random variables,
from which we constructed derived sequences such as the partial sum or the incremental average of the
random variables.

Collections of random variables { X, } indexed by the natural numbers are known as discrete-time stochas-
tic processes, or discrete-time random processes. The index is used to represent time. Such models are often
used to represent random time signals that arise in dynamical systems, and have many interesting applica-
tions in engineering.

In this chapter, we focus on a class of discrete time random processes known as Markov chains. Markov
chains are a special class of discrete time random processes because of two properties. First, the range of
the individual variables X; is discrete, which will will allow us to develop a rich connection between the
probability models and concepts from graph theory. Second, the joint probability distribution functions of
Markov chains will satisfy the Markov property, which we discuss later in this chapter. Markov chains can
also be defined as random processes that are indexed in continuous time, but those extensions are outside
the scope of this course.

Markov chains were introduced by Andrey Markov in 1906 to study extensions of the Law of Large
Numbers and the Central Limit Theorem to sequences where the random variables were not independent
and identically distributed. Such models form the basis for many interesting applications such as speech
recognition, communications networks analysis and stochastic automata. Markov chains provide the foun-
dation for many of today’s leading technologies. Google’s page rank algorithm was based on a Markov chain
model of how websites are visited. Viterbi decoding, named after one of Qualcomm’s founder, is based on
Hidden Markov Model techniques, and is used extensively in modern communications. Markov chain models
play fundamental roles in speech and natural language recognition. Markov models are used extensively in
mathematical finance to analyze expected returns of different investment mixtures. They also provide the
foundation for the analysis and design of network systems for handling random traffic demands.

In the remainder of this chapter, we discuss the foundations of discrete-time Markov Chains and ex-
plore their properties. First, we will introduce discrete-time, discrete-space Markov processes, and define the
Markov property that characterizes such processes. Following this, we develop tools for computing probabili-
ties in Markov chains. We develop approaches for characterizing how the marginal probability of the Markov
chain evolves with the time index, and explore the limiting behavior of such systems. We also introduce
tools for analysis of the transient behavior of Markov chains.

11.1 Definition of Markov Chains

Let Rx be a finite, or countably infinite set of possible values, which we call the state space. This set is a
subset Rx C R. Define a probability space (€, E,P) that generates a countably infinite sequence of random
variables Xy, X1, Xo,..., each of which takes values in the state space Rx. An outcome w € §) generates a
sequence of numbers Xo(w), X1(w), ... with values in R x. For each outcome, we refer to this sequence as a
trajectory of the Markov chain.

Given a finite subsets of these random variables Xy, ,..., Xy, , where t1,...,¢, € {0,1,2,...}, we can
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compute joint probability mass functions of the form Px, . x, (ty,-.., 2, ). These joint probability
mass functions (PMF) can be used to generate conditional probability mass functions as well as marginal
probability mass functions. We refer to the indices ¢ as times, so we think of X;(w),t = 0,1,... as a trajectory
over time.

Without loss of generality, assume the indices t; < to < ... < t,, are ordered linearly in time. Using
conditional probabilities and the product rule for probability mass functions, we can write the joint PMF of
the random variables with those indices as

Px, X, (@t me,) = P, ix,x, (@ [T, 2, )

Py,

m—1

Xy X,y (Tt 1 |Ttys ooy Tty n) o P x,, (@ |2, P, (2)

m—1

We say that the sequence of random variables X, X1, X5 ..., satisfies the Markov Property if and
only if, for any set of times t > t,, > ... > t;, we have

PXt\th oo Xtm, (xtlxtu s 7xt7n) = ]DXt|Xzm (‘Tt|xtm)'

That is, the conditional probability mass function of the random variable at time t, X;, given values of
random variables at different previous times ti,to,...,t,,, depends only on the value of the most recent
random variable in its past. This simplifies how we write the joint probability mass function, as

Px,y Xy, @5 -o@e,) = Py, ix,, (@ @0, ) Px,ix @, |, 0) - Py, xg, (T @6) Px, (@)

Thus, we can specify the joint probability mass function (PMF) of a collection of random variables in
terms of a product of pairwise conditional PMFs times the marginal PMF of the random variable with
the earliest time index. This economical description is very useful in obtaining an economical probabilistic
description of the Markov chain.

Of particular interest is the one-step conditional probability Px, ., |x,(z¢+1]2t). In general, this condi-
tional probability depends on time. Assume that the state space is given as Rx = {a1,as2,...,ap,...}. Then,
Px,.,1x,(Tt11 = aglrs = a;) depends on ag,a;, and t. When this conditional probability does not depend
on t, we say the Markov chain is homogeneous or time-invariant. Homogeneous Markov chains have the
nice property that the conditional probability mass function Px,.,|x,(zt+1 = ax|z: = a;) is the same for all
t=0,1,2,.... Hence, the full probability description of the Markov chain can be obtained from the marginal
PMF Px,(xo) and the one-step conditional probability Px, ., |x, (%11 = ax|r; = a;). As shorthand notation,
we define the transition probability kernel of the Markov chain as a matrix P with elements defined as:

ij = PXt+1|Xt(-Tt+1 = CLk|.’Et = aj), j,k’ S {1,2,. . }

Thus, P is the probability that, if the random variable X; has value aj, then the random variable X,
will take value ai. The transition probability kernel has the following properties:

e 1>Pj, >0forall j,k e {1,2,...}. This follows because it was defined as a conditional probability,
which is a probability.

e >, Pji = 1. This property is the normalization property for conditional PMFs.

We refer to the random variable X, as the state at time ¢. The Markov chain provides a probabilistic
description of how the state X; evolves over time.

Example 11.1

Consider the following Markov chain, where the state space is Rx = {1,2,3,4,5}. We assume initially that X, = 3;
that is, uniform; that is, Px,(3) = 1, Px,(z) = 0 if x # 3. Thus, we have defined the marginal PDF at time 0. We now
describe the transition probability kernel, as follows: if j # 1,5 # 5, then

05 k=j+1
PXt+l|Xt($t+1:k‘mt:j): 05 k=j-1

0 elsewhere.
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For j = 1, the transition probability kernel is

05 k=2
Px, 1x (@41 = klze =1) = €05 k=1

0 elsewhere.
For j = 5, the transition probability kernel is

05 k=5
th+1‘Xt(CL‘t+1 :k|$t :5) =<¢05 k=4
0 elsewhere.

Note that we can represent this transition probability kernel as a matrix P, where

05 05 0 0 0
05 0 05 O 0
P=]0 05 0 05 0
0 0 05 0 05
0 0 0 05 0.5

We now have a complete description of the probabilistic structure of the Markov chain. We can answer questions such as:
What is the probability that Xo = 3, X1 = 2, X, = 1?7 Note that this will be Px,(3)P32P21 = 0.25. Another question
might be what is the probability that X3 = 37 Although we don't have an easy way of computing this yet, we see that
there are two ways that X3 = 3, which is with X2 = 2 and X2 = 4. Each of those two paths will have probability 0.25,
so the probability that X3 = 3 will be 0.5.

More rigorously, we would compute the joint probability of X1 = 3, X2 = k, X3 = 3 as P3xPx3. To get the probability
that X3 = 3, we would sum over k this joint probability, thereby marginalizing the intermediate random variable X5 = k.
It so happens that this product is nonzero only for kK = 2 and k£ = 4, so the sum is again 0.5.

In the special case that the state space Rx is finite, the set of possible states is {a1,as,...,ax}, and the
transition probability kernel Pj; can be represented as a K x K matrix P with (j, k) —element Pj;. In this
case we denote P as the state transition matrix or the transition probability matrix of the Markov
chain. We study the special case of homogeneous, finite state Markov chains next.

11.2 Finite State Markov Chains

11.2.1 Graphical representation of the Markov chain

Consider a finite state Markov chain, with state space Rx = {a1,a2,...,ax}. To simplify notation, we
assume Rx = {1,2,..., K}. For a homogeneous, finite state Markov chain, the transition probability kernel
is represented by a state transition matrix P, with properties

« Py c0,1), jkefl,.... K}
o> Pjr=1forj=1,.... K.

That is, all of the elements of P are nonnegative numbers less than or equal to 1, and the sum of every row
equals one. Matrices that satisfy these two properties are known as stochastic matrices. Later in this
section, we will describe some useful properties of stochastic matrices that help us understand the behavior
of Markov chains.

The state transition matrix P is often sparse, containing many zeros. In Example 11.1, over half the
matrix was composed of zeros. We can represent the contents of the matrix P in graphical form, where nodes
indicate possible values of the state, and directed arcs between nodes represent transition probabilities. Thus,
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Figure 11.1: Graph of Markov chain state transition matrix for Example 11.1.

the graph contains K nodes (the cardinality of Rx) and a number of directed arcs equal to the number of
positive elements in P. Figure 11.1 shows the graph that represents the state transition matrix P in Example
11.1. Note the directed arcs, with weights that correspond to the non-zero entries of P. The condition that
the rows of P must each add up to 1 implies that the sum of the probabilities of the arcs that leave each
node must equal 1. This includes self-loop arcs where the transition is from a particular state to itself.

Example 11.2
Consider a four state Markov chain, with state transition matrix shows the graph for a four state Markov matrix

P P O 0
P31 0 0 0
0 0 Puz Pu

P—

What is the graph of the Markov chain?

The graph is shown in the figure below. The graph has 7 directed arcs, corresponding to the 7 non-zero elements of P.

Figure 11.2: Graph of Markov Chain transition probabilities.

Example 11.3

One of the simplest Markov chain models has two states, Rx = {1,2}, corresponding to an on-off system. This model
is often used for failure-repair processes. When the model is in state 1, the “on” state, there is a probability of failure p
at each time. Eventually, a failure happens, and the state of the system transitions to state 2, the “off” state. In this
state, there is a probability of repair ¢ at each time. Eventually, the state transitions back to the “on” state 1. The state
transition diagram is shown in Figure 11.3.

The graph representation of the state transition matrix helps us understand how the Markov chain
behaves as a function of time. One view of the Markov chain is that it is a collection {X;,¢t = 0,1,...}
of random variables with joint probability mass functions that satisfy the Markov property. A different
view is to consider the sequence of values {Xq(s), X1(s),...} that would occur from a single realization s
of the experiment that generated the chain. We refer to such a sequence as a trajectory of the Markov
chain. A trajectory is a time sequence of state values, and can be viewed as a trajectory on the graph,
where transitions between states that are adjacent in time can only happen if there is a directed arc from the
previous state to the next state. With this perspective, the Markov chain generates a probability distribution



11.2. FINITE STATE MARKOV CHAINS 239

S

Figure 11.3: Graph of Markov Chain transition probabilities.

over possible state trajectories on the Markov chain graph. The Markov property establishes that, given
knowledge that the chain is in state X; = k at time ¢, the probability distribution on the future trajectory
of the state depends only on X; = k, and not on any values X, s < t. Thus, X; = k has all the information
needed to predict the future state values X, 7 > t.

Example 11.3 illustrates an important property of the state trajectories of Markov chains. We know
the system remains in the same state for a random number of time steps before transitioning to another
state. A possible state trajectory for the first 30 steps is 000000011000000000011110000011, where we see
the trajectory start at state 0, stay there for 7 times before transitioning to state 1 in time 8. The next time
the system visits state 0, it transitions to state 1 in 11 times. Because of the Markov property, the amount
of time it takes to transition out of state 0 has the same distribution for every visit in the trajectory. For
each state k, define the random variable Hy(w) as follows:

Hy(w) = min{t : Xo(w) = k, X,(w) # K},

Note we have included the explicit dependence on the realization of the trajectory w. Hy(w) is the first exit
time that the Markov chain trajectory would leave state k, given that it started at time 0 in state k. .

Hj, is a discrete random variable, with values in {1,2,...}. It can even take an arbitrarily large value,
albeit with decreasing probability. The following result characterizes the PMF of Hy.

Lemma 11.1
For a homogeneous Markov chain with state transition matrix P, the first exit time from state k, H}, is a geometric random
variable with success probability 1 — Pgg.

To show this, note that, if the Markov chain is in state Xy = k at time 0, the probability that it exits
at the next time is 1 — Pgg. Thus, P[Hr = 1] = 1 — Py. If it does not exit, then the chain remains in
state X1 = k with probability Px;. The event that the chain exits at time 2 is independent of the prior
history of the Markov chain, because of the Markov property, and has probability g of occurring. Hence,
P[Hj = 2] = (1—Pyy)Ppk, and the probability that X, = k is PZ,. Continuing by induction, we can establish
that P[Hy = £] = (1 — Py1.)(Px)*~ !, which is the PMF of a geometric random variable.

11.2.2 Evolution of marginal probabilities

Let X;,t =0,1,... be a discrete time, finite-valued Markov chain with values in Rx = {1,2,..., K}. The
Markov chain has a marginal distribution at ¢ = 0 as Px, (o). We can represent this distribution as a vector,
as illustrated below.
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Similarly, we denote the marginal PMF of X; as a vector p(t), defined as

Px,(1)
Px,(2)
pt) = :

Py, (K)

The state transition matrix P can be used to compute the evolution of the marginal probability vectors
p(t) over time, as follows: Note that, at time 1,

PXO,X1 (.]7 k) = PX1|X0(k|j)PX0 (.7) = ijPXo (])

Hence, the marginal probability at time 1 is given by summing over the possible values j of X, as
K
Px, (k) = PjxPx,(j)
j=1

which can be written in terms of matrix operations as
p(1) = PTp(0)
Extending the above argument inductively yields the following recursion:
p(t) = P(t)"p(0),

where P(m) = P™ for m > 0 is the m-step transition probability matrix. The multistep transition matrix
satisfies the Chapman-Kolmogorov equation

P(n+m) =P(m)P(n) =P(n)P(m) for n,m >0.
Note that P(0) is the K-dimensional identity matrix lg.

Note that the state transition matrix P and the multi-step transition matrix P(m) must satisfy the laws
of conservation of probability. That is, for any row k, we must have

oo oo
S Pui=1 > Pm)y =1
=1 =1

Example 11.4

Assume a person starts in the middle of a room. At each time, with probability p = 0.5, they take a step to the right.
With probability 0.5, they take a step to the left. However, if they are at the wall, and they try to take a step into the
wall, they stay in place. Assume the walls on the left and right are five steps away from the center of the room. What is
the probability that the person will be next to the right wall at time 107

The figure below illustrates the Markov chain for this problem, under the assumption that p = 0.5. The starting position
is in state 6, so that Px,(6) = 1. The state transition matrix is given by

Il-p p 0 0 0
1-p 0 P 0 0
0 1-p O P 0

P = )
0 0 e 1—p 0 P

0 0 0 1—p »p



11.2. FINITE STATE MARKOV CHAINS 241

We are interested in computing P(10)6,11, the probability that, starting at state 6 at time 0, we are in state 11 at
time 10. By direct computation, we get P(10)s,11 = 0.0439. How would this change if we increased the time to 20? The
probability of being next to the wall increases to 0.0741. If we consider the same question at time 100, the probability
increases to 0.0905. After 200 steps, the marginal probability vector is

[0.09097
0.0909
0.0909
0.0909
0.0909

p(200) = [0.0909] ,

B 0.0909
0.0909
0.0909
0.0909

10.0909 |

having reached a steady state.

Example 11.5
In Example 11.4, we saw the marginal probability vector p(t) approach a limit as t — co. Do we see similar behavior in
other examples? Consider the on-off system of Example 11.3. Let p = 0.1, ¢ = 0.2. In this case, the state transition matrix

is
p_ 1—p P 109 0.1
Tl q 1—q| (0.2 0.8]|°
Assuming we start in the “on” state 1, we compute the marginal probability vector after 5, 10, 20, and 40 times. The
results are shown below:

p(5) =

0.7227 0.6761 0.6669 0.6667
{0.2773}  p(10) = {0.3239} $ p(20) = [0.3331}  p(0) = [0.3333] '

Again, we see the marginal probability vector approach a steady state with increasing t.

Assume that the marginal distribution vectors converge to a steady state marginal distribution 7. In
this case, this steady state distribution must satisfy PTE = 7. That implies that « is an eigenvector of the
matrix P, corresponding to an eigenvalue of 1. We know that P has an eigenvalue of 1, with eigenvector
corresponding to the K-dimensional vector of all ones, because the sum of every row of P equals one. That
is,

1 Egzl Py, 1
1 2 k=o P1i 1
P|.| = ) =|.
1 25:1 Pry 1

Since the eigenvalues of P and PT are the same, PT also has an eigenvalue of 1, with corresponding eigen-
vector. Note also that z is the limit of a sequence of marginal probability mass functions, and hence the
limit will also be a valid probability mass function: 7 € [0, 1], Eiil T = 1.

To better understand the limit behavior of Markov chains, we discuss the properties of stochastic matrices
that control the evolution of the marginal distributions.

11.2.3 Stochastic matrices

When the number of states is finite and equal to K, the state transition matrix will be an K x K matrix P,
where P is such that all of its entries are nonnegative and the rows sum up to 1. Nonnegative matrices with
the property that the rows sum up to 1 are known as stochastic matrices.

We first quote a theorem for linear algebra that relates the locations of the eigenvalues of matrices to the
elements of its rows.
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Theorem 11.1 (Gershgoren’s Theorem)
Consider a square matrix A of dimension K x K. Define distances d; = >

n
J=1,5%1

L={AeC:|A—Ay| <d;forsomeiec{l,...,K}}.

|A;;|. Define the set of complex numbers

Then, all of the eigenvalues of A are contained in the set L.

The distance d; is the sum of the magnitude of the off-diagonal elements in row . The set L consists of
the union of circles of radius d; centered around each of the diagonal elements A;;. Figure 11.5 illustrates the
3 2
1 1
of two circles in the complex plane, centered at the diagonal elements (3,0) and (1,0), with radii 2 and 1,
respectively. By direct computation, the eigenvalues are 3.7321 and 0.2679, which are in the union of the
two circles.

implications of Gershgoren’s theorem for the matrix A = [ } . The eigenvalues must lie in the union

Figure 11.5: Illustration of Gershgoren’s Theorem.

For stochastic matrices A, the rows add up to 1, and all the elements are non-negative. This means that
d; + A;; = 1, and the center of the circle is on the non-negative real line. Hence, all of the eigenvalues of a
stochastic matrix must be on or inside the unit circle of radius 1, centered at 0. Furthermore, since every
row adds to 1, we know that the vector 1 = [1,1,...,1]T satisfies Al = 1, and is thus an eigenvector of the
matrix A with eigenvalue equal to 1.

Figure 11.6 illustrates Gershgoren’s theorem for stochastic matrices. Note that all of the eigenvalues A
of A must satisfy |A| < 1.

The other theorem from mathematics that relates to the eigenvalues and eigenvectors of stochastic ma-
trices is the Perron-Frobenius theorem, stated below:

Theorem 11.2 (Perron-Frobenius Theorem)

Consider a square matrix A of dimension K x K with non-negative elements. Then, there exists a non-negative real eigen-
value Apr with associated non-negative eigenvector, such that |A\| < App for any other eigenvalue A of A. Furthermore, if
A is such that A is strictly positive for some k, then |\| < Apr and the associated eigenvector with Apr can be chosen
as strictly positive.

The Perron-Frobenius theorem establishes that Apr = 1 and that the associated eigenvector m can be
chosen so that 7 is non-negative. Furthermore, it establishes the condition that is needed to ensure that
7 > 0 and is a unique stationary density: if there exists k such that every element of Pt = P(k) is positive.
We will provide graphical conditions that are necessary and sufficient for this to be true.
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Figure 11.6: Illustration of Gershgoren’s Theorem for stochastic matrices.

Example 11.6
Consider the “on”-"off"” example in Example 11.5, with state transition matrix

[ 1)
g l—gq
The eigenvalues of this matrix are the solution of the quadratic equation
(s—p)s—q)—(1-p)(1—q)=s"—(p+q)s+pg—1+(+q) —pg=(s—1)(s—(p+q—1)) =0

which are 1,p 4+ ¢ — 1. The magnitude of the second eigenvalue is strictly less than 1, unless both p, g are either 0 or
1. Note that, if p,q € (0,1), then P > 0 and, by the Perron-Frobenius Theorem, there is at most one eigenvalue with
magnitude 1, and the limit eigenvector can be chosen to be strictly positive. The eigenvector of PT corresponding to the

eigenvalue 1 satisfies:
P = |:1 -bp q :| =

D 1-g¢

=

This results in the equations
(1—p)m +qme=m < —pm+qm2a=0
p7T1+(1fq)7r2:7r2 < pm —qme2 =0
which reduce to m = %m. To find 71, we use the normalization property of PMFs, which says that 71 +m2 = 7r1(1—|—§) =1.

N 1y _ p
This implies that 7 = ey T2 = i

11.2.4 Steady-state behavior of Markov chains

As discussed previously, the marginal probability mass function p(t) evolves according to a linear system:

T
p(t+1) =P p(t)
For homogeneous Markov chains in discrete time, this equation may have a limit as ¢ — oo, as all the
eigenvalues of P will have magnitude less than or equal to 1. We are interested in providing conditions where

lim P' = P,

t—o00

and
lim p(t) = lim (P")"p(0) = Pop(0) =

t—o0— t—o0 = Rt
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To illustrate issues that can arise, consider the two graphs illustrated in Figures 11.7(a) and 11.7(b). The
first graph shows that, after starting in state 2, one can either go to state 1 or to states 3 and 4. Depending
on which transition is used, the limit will be different. It is clear that this Markov chain may have multiple
limiting distributions. The second figure illustrates a more complex case. If one starts in state 1 at time
0, note that one can only be in an odd-valued state at even times! This Markov chain will not approach a
limit, but rather will oscillate between two limits!

<___—

(?—(Z)—@'
(O—

(a) Markov chain with two limits (b) Period 2 Markov chain

Figure 11.7: Illustration of Markov chains with difficult limit behavior.

For finite state Markov chains, one can define regularity conditions that guarantee that there is a unique
eigenvalue of P with magnitude 1, so that there are unique limits. Furthermore, these conditions can be
established from the transition diagram of the Markov chain! We discuss these next.

Consider two states i, j of the Markov chain. State j is said to be accessible from state i if there exists
a time n such that (P");; > 0. An equivalent graphical condition is that there exists a directed path with
positive probability arcs from node ¢ to node j in the Markov chain graph. In the reflected random walk
diagram of Figure 11.4 in Example 11.4, every state is accessible from every other state. However, consider
the minor variation shown in Figure 11.8, where one of the feasible arcs has been removed. In this case,
state 7 is accessible from state 6, but state 6 is not accessible from state 7.

Two states i, j are said to communicate if 7 is accessible from j and j is accessible from ; by conven-
tion, every state is said to communicate with itself. Communication is a transitive, symmetric and reflexive
binary relationship, hence it is an equivalence relationship. A communicating class is a non-empty set
of states that communicate with each other, and no state in the class communicates with any state outside
the class. The set of possible states of a finite-valued Markov Chain can be partitioned into disjoint com-
municating classes. For instance, the Markov Chain illustrated in Figure 11.8 has 2 communicating classes:
{1,2,3,4,5,6} and {7,8,9,10}.

Figure 11.8: Example of Markov Chain with inaccessible states
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When a Markov Chain has only one communicating class, it is said to be irreducible. In irreducible
Markov Chains, every state communicates with every other state, as in Fig. 11.4.

A state 7 in a homogeneous Markov Chain is said to be transient if, given that the Markov Chain starts
at state ¢, there is a non-zero probability that the state never returns to state ¢. Formally, assume Xy = 1,
and define the random time 7' = min[t > 0 : X; = 4]. Then, P[{T = oo}| > 0. Thus, there is positive
probability that, when the trajectory of the Markov chain leaves a transient state, it will never return to it.

For finite-state Markov Chains, there is graphical way of identifying a transient state: A state ¢ is transient
if and only if there is a second state j such that j is accessible from ¢, but 7 is not accessible from j. In
Figure 11.8, states 1, 2, 3, 4, 5 and 6 are transient states, and they can each access state 7, but cannot be
accessed from state 7. Note that, if a state 4 is transient, every other state k in its communicating class is
also transient, because that state k can communicates with state ¢ and therefore can access a state j not in
its communicating class.

When a state is not transient, it is called recurrent: recurrent states have the property that the expected
time to return to the state, given that the Markov Chain starts in that state, is finite. In terms of the random
time T defined previously, E[T] < oo for recurrent states. In Fig. 11.8, states 7, 8, 9 and 10 are recurrent
states. Note that, for finite state Markov Chains, we can label each communicating class as either recurrent
or transient.

The meaning of transient states is that, as time grows, the probability of being in a transient state decays
to zero. If there is a limiting probability distribution z and state ¢ is transient, then m, = 0.

Note the following: If a finite state Markov chain has more than one recurrent communicating class, there
will be more than one limiting distribution for p(¢), and the limit will depend on the initial distribution p(0).
The matrix P will have more than one eigenvalue equal to 1. This is the case in the Markov Chain in Fig. 11.7,
where state 1 is one recurrent communicating class, and states 3,4 are the other recurrent communicating
class.

When there is only one recurrent communicating class, there is a unique stationary probability distribu-
tion m such that

Pln=n (11.1)

Specifically, the matrix P will have a single eigenvalue with value 1. However, this condition is insufficient
to guarantee that this stationary probability distribution will be the limit distribution for arbitrary initial
probability distributions.

Specifically, consider Fig. 11.7(b). It is easy to verify that all states belong to a single communicating
class, which is recurrent. However, we have already established that, starting from the initial condition
Xo = 1, the probabilities p(t) do not approach a limit! Indeed, they will approach a limit cycle where they
will shift among two different limits for odd and even values of n. In this case, there is a second eigenvalue
of P on the unit circle, with value -1.

For a finite state Markov Chain, we define the period of state j as the greatest common divisor of the
lengths of all the cycles from state j to itself in the graph of the Markov Chain. A more mathematical
definition is that the period d is the largest integer d such that (P™);; = 0 unless n is divisible by d. A state
with period 1 is said to be aperiodic.

Note that the period of all the states in the same communicating class must be the same. This follows
because of the cycles for a state k in this communicating class must consist of states in that communicating
class. The proof of this is a bit involved but straightforward from the definition.

A communicating class is periodic with period d if every state has period d greater than 1. There is a
simple condition to recognize whether a communicating class is aperiodic: As long as one of the states in
the communicating class has a self-loop (e.g. P;; > 0 for some i), the period of that state is 1, and the
communicating class must be aperiodic.
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We can now give conditions for a finite state Markov Chain to have a unique limiting probability dis-
tribution 7, which is approached from any initial probability distribution p(0). We state this below as a
theorem.

Theorem 11.3
Assume that X; is a finite state homogeneous Markov chain with state transition matrix P. If the Markov chain has a
single recurrent communicating class, and the class is aperiodic, then there exists a unique limit distribution 7.

Note that a Markov chain with transient states can approach a unique limit distribution & as long as
there is only one recurrent, aperiodic communicating class. This limit distribution will have 7 = 0 for all
transient states k.

There is a stronger result for the special case of irreducible Markov chains which have a single commu-
nicating class.

Theorem 11.4

Assume that X is a finite state homogeneous Markov chain with state transition matrix P. If the Markov chain is irreducible
and aperiodic, then there exists a unique limit distribution 7. Furthermore, this limit has the property that w; > 0 for all
states j. Such a Markov Chain is called ergodic.

The combination of the irreducible and aperiodic conditions imply that there exists £ > 0 such that
P* > 0, that is, a matrix with strictly positive entries. In this case, the Perron-Frobenius theorem estab-
lishes the existence of a unique eigenvector of PT for the eigenvalue 1 with strictly positive elements. The
limit distribution 7 is this unique positive eigenvector of the matrix PT corresponding to the eigenvalue 1,
normalized so that its entries that sum up to 1.

11.2.5 Computing stationary probability distributions

An important problem in the analysis of Markov chains is computing the stationary probability distribution
7. The algebraic characterization is PTE = 7, where P is the state transition matrix. This can be a
cumbersome set of equations to solve. There is another set of equations based on the graphical representation
of the Markov chain transitions that can be easier to analyze. A cut C of a directed graph is a set of arcs
such that, when the arcs are removed from the graph, the graph is divided into two disjoint set of nodes
with no arcs between them.

The useful property of cuts is that, given any cut of the Markov chain graph, the probability flow across
that cut must equal zero once the system reaches the stationary distribution. A cut C specifies a subset
A C Rx and its complement A€ in Rx, and consists of the arcs going from A to A¢, and from A€ to A.
Given a distribution & on the states of the Markov Chain, the net probability flow on a cut C' is defined as

F(A, A% = Z Z Pijmi — Z iji”j

i€A jEAC jEAC €A

The main result is that, if 7 is a stationary distribution of a Markov chain, then the net probability flow
along any cut must be zero! This is summarized in the theorem below:

Theorem 11.5
7 is a stationary distribution of a Markov chain if and only if >, m; = 1 and the net probability flow on any cut in the
Markov chain graph is zero. That is, for any A C Rx, we have

Z Z Pijmi — Z iji’ﬂ'j =0

i€EA jEAC JEACIEA
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O-
Figure 11.10: Diagram of the Markov Chain for the

Figure 11.9: Illustration of probability balance  example

This property is referred to as probability balance.

To see that the theorem is equivalent to stationarity, note that if we select A = {i}, you get exactly the
balance equations for the eigenvector:

Zpijﬂ-i = Z Pjiﬂ-j-
J#i JER X ,j#1

If we add P;;m; to both sides, we have

K K
E Pij T, = Ty — E Pji’/Tj-
j=1 =1

This is the i-th equation of PTxw = 7. Tt is also easy to show the converse, so that starting from balance
equations, one can show flow in and out of any group of states is zero for stationary distributions.

Why is this useful? Sometimes, it is easy to identify cuts that yield equations that are simpler than
the eigenvector equations. To illustrate how to use probability balance to compute stationary distributions,
consider the example in Figure 11.9. The example shows three different cuts, that separate the graph into
two disconnected sets of nodes with no arcs across them. Applying fllow balance to each of these cuts yields
the equations:

Pyym + Piam — Psis = 0

Pasme — P3ams3 =0

Poymy 4+ Pyymy — Pysmy = 0.
The above yields three equations in five unknowns, so it is insufficient to find a solution. We can add another
cut, isolating state 5, to obtain the following equation: Pgsi7m5 = Py4sm4. Other cuts are possible, but will

be redundant with these equations. Notice that none of those equations include a constant, so the solution
m; = 0 satisfies the equations. Just like we had to do in the eigenvector method, we must add a normalization

equation:
5
Z T = 1.
j=1

With that as a fifth equation, we now have a unique solution which will yield a positive, normalized 7.

Example 11.7
Consider a 4-state discrete time Markov chain, with transition probability matrix described below:

02 02 02 04
0 0 0 1
0 0 01 09

02 0 0 08
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The graph illustrating the transitions of this Markov chain is shown in Fig. 11.10:

Looking at the diagram, it is easy to see that all 4 states are recurrent, as there are directed paths from any one state
to any other state. Thus, the chain has a single recurrent communicating class, and thus is irreducible. One can also
determine that the Markov chain is aperiodic, because there are some self-loops of length 1. Thus, the Markov chan has
a unique steady state distribution, which can be computed as follows: To compute the steady state distribution, we need
4 equations. One of them is:

T+ M+ w3+ ma=1
To find 3 others, cut node 2 away from the graph. The flow on that cut yields:

0.2m = m2
Cut node 3 away from the graph, to get:
0.2m1 = 0.973
To get the last equation, we can cut around node 1 to get:
0.8m1 = 0.274

Using the last 3 equations, we get:
mo =m1/5; w3 = 2m1/9;ma = 4m
Substituting into the first equation yields:
45
m(l+1/5+2/944)=1=m = GYY
9 10 180

szm; 7T3:m7 Wr:m

Example 11.8

We want to model a counter that behaves as follows: The counter has three states: Rx = {1,2,3}. When the counter is
in state 3, it shifts to state 2 at the next time. When it is in state 2, it shifts to state 1 at the next time. When it is in
state 1, it shifts to states 1, 2, or 3 at the next time, each with probability %

The state transition matrix of this Markov chain is P = . The state transition diagram for the Markov

O =Wl
= O wl=
S O wl=

chain is show in Figure 11.11.

1/3

ROSBONO

Figure 11.11: Diagram of the Markov chain for Example 11.8

A quick analysis of the graph shows that there is a single recurrent class, and that there are no transient states. Cuts
around nodes 3 and 1 plus the normalization equations yields the following equations:

71'1_

ER
27(1_
E

m+m+r3=1

Solving this yields the stationary distribution: © =

[N
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Example 11.9

Consider a model of a reflected random walk in a contained space. The state space is Rx = {1,2,...,10}. At each time
t, if the state k is in {2,...,9}, the next state is k + 1 with probability p and k — 1 with probability 1 — p. If the current
state is k = 1, then the next state is 1 with probability 1 — p and 2 with probability p. If the current state is £ = 10, the
next state is 10 with probability p and 9 with probability 1 — p. The diagram of the Markov chain is displayed in Figure
11.12.

Figure 11.12: Diagram of the Markov chain for Example 11.9.

It is clear that the graph of this Markov chain is irreducible, and the presence of two self-loops makes it aperiodic.
Hence, there is a unique stationary distribution. The linear structure of the Markov chain graph makes it easy to find 9

cuts, separating states k,k+ 1, for k =1,2,...,9. These cuts yield the following equations:
pmi=(1—p)me;  pma=(1—p)ms;  prz = (1 —p)ms;
pma=(1—p)ms;  pms =(1—p)me;  pme = (1 — p)77;
prr = (1 — p)ms; prs = (1 — p)mo; pmg = (1 — p)mio;

Solving, we get the following relationships:

k—1
T = (L) m, k=2,...,10.
1-p

The tenth equation needed is the normalization equation:

10 10 p k—1
Z’ﬂ'k::l < Z(m) 7'['1:1.
k=1 k=1

Fortunately, we can sum this term:

L, \10
() -
— - __pr
k=1 I=p 1 1-p
1P k—1
Hence, m = % and 7, = (ﬁ) w1, k= 2,...,10. This expression is valid as long as p # 1 — p. Thus, if
(=
p = 0.4, we obtain m; = 0.3392, and 719 = 0.0088.
If we have symmetry, and p = 1 — p = 0.5, the balance equations indicate that 7; = 7, for all j,k € 1,...,10 so the

steady-state distribution is 7 = 0.1.

Although we have focused our analysis on ergodic Markov chains so far, it is often possible to analyze
the limiting behavior of non-ergodic Markov chains. We illustrate this with two different examples.

Example 11.10
Consider the Markov chain with state transition diagram shown in Figure 11.13. The Markov chain has a single recurrent
class, but has period 2. The state transition matrix is

0 1 0 0 O
0 0 05 05 0
P=1]0 1 0 0 O
0 0 O 0 1
1 0 O 0 O

The state transition matrix still has an eigenvalue of 1, and there is a stationary distribution 7, which we can find using
probability balance, as:
s = m1; 74 =ms; w3 = 0.5m; w4 = 0.5m2
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0.5

0.5

Figure 11.13: Diagram of the Markov chain for Example 11.10.

This means 1 = 3 = w4 = @5, and w2 = 2m;. Coupled with the normalization constraint, this yields 671 = 1, so

Tl = T3 = My = M5 = %,7@ = % If the Markov chain starts with this distribution, it will stay in this distribution.

However, for different initial conditions, the limiting behavior will oscillate between two distributions, depending on the
initial condition, and it won’t converge to the stationary distribution. For instance, if Xo = 1, the two distributions in the

limit are

W= O Owivn O
5]
=]
o

O wlFwl- O wl-

Example 11.11
Consider the Markov chain with state transition diagram shown in Figure 11.13. The Markov chain has two communicating
classes (states 1, 2, 3, and states 4, 5), but it has a single recurrent class (1, 2, 3). The state transition matrix is

b0 o
1 0 0 0 O
P=]0 1 0 O O
00 p 0 1—p
0O 0 0 1 O

Since we know there is no steady state probability in the two transient states (4, 5), we can simply restrict our analysis
1/3

ROSB OO
1 1 o

Figure 11.14: Diagram of the Markov chain for Example 11.11.

to the recurrent class, and analyze the steady state behavior of a 3 state model, with transition probability matrix

P, =

O Rwi=
= O wl=
O Owl=

This is the same Markov chain we analyzed in Example 11.6. Thus, the steady state probability in the original Markov
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chain is

O O ol-wlFN=

11.3 Markov chains with infinite state spaces

The above discussion focused on finite state Markov chains, where the state space Rx has a finite number
of states. What changes when the state space is infinite? We can no longer use linear algebra to establish
our results, as the transition probability function P;; does not have a convenient representation as a finite
matrix. We highlight some of the key issues and differences below.

Example 11.12

Consider a random walk with probability 0.5 of going forward or back at each time. For this Markov chain, the state space
is the space of integers: Rx = {...,—2,—1,0,1,2,...}. It is easy to see that every state communicates with every other
state. This Markov chain has period 2, and has a single communicating class. However, there cannot be an equilibrium
distribution: we are no longer guaranteed that there is a positive “eigenvector” with eigenvalue 1. If there were, note that,
by symmetry, every equilibrium state should have the same probability. However, since there are an infinite number of
states, there is no way to select such a probability to satisfy the normalization condition ZkeRx me = 1.

Example 11.13

Consider a Markov chain defined on the non-negative numbers as follows: Poo = 1/2,Po1 = 1/2. For k > 0, Po_1yr =
Pi(kt1) = 1/2. All other P;; = 0, i — j| > 2. This chain is aperiodic (state 0 has a self-transition, so it has period 1)
and has a single communicating class. However, this chain will not have an equilibrium distribution. Looking at balance
equations, cutting between states ¢ and j, we the relation:

T = k41, k= 0,1,...

Hence, every state would have the same steady state probability, but with an infinite number of states, they would all be
zero, a contradiction!

One way of seeing this is to look at the expected time to reach state O from state n. As we will show later with our
transient analysis, no matter what state you start in, the expected number of steps it takes to reach state 0 is infinite!

The first important difference when the Markov chain has an infinite number of states is in the concept
of recurrence. When the state transition graph was irreducible and the state space was finite, we could
guarantee that P?j > 0 for every pair of states 4, j; thus, with probability 1, we would visit state j when we
start in state ¢ in finite expected time. When the state space is infinite, this condition of irreducibility is no
longer sufficient.

Let X; be a time-homogeneous Markov chain with transition probability P. Note that the state space
R x may be infinite. Define the following quantities:

T, =inf{t > 1: X; =i} = first passage time for state i

When Xy = ¢, then T is the revisit time for state i. We can now define some useful quantities relating how
X, visits a particular state i. Let Z{X; = i} denote the indicator function which is 1 when the event X; =i
is true, and zero otherwise. Then,

o0
Vi = ZI{Xt =} is the number of visits to state 4
=0
fi =P[T; < 00| X = 1] is the probability that the chain revisits state 4

m; = E[T;| Xy = 4] is the expected return time to state 4
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Consider the case of a finite-state aperiodic Markov chain with a single recurrent communicating class,
but with some transient states. Let ¢ be a transient state. Then, V; is finite, and f; < 1. However, if 7 is a
recurrent state, we get that V; = oo with probability 1, f; = 1 and m; < oo, so that the chain continues to
revisit state i. We use these concepts to extend the definition of recurrence to infinite state Markov chains:

Definition 11.1
A state i of a homogeneous Markov chain {X¢,t =0,1,...} is recurrent if

P[V; = 00| Xo = 1] = 1.

A recurrent state is one that you return to an infinite number of times. Indeed, we can characterize a
recurrent state as one for which f; = 1, and a transient state as one for which f; < 1. When the state
space is infinite, we don’t have simple graphical characterizations of what recurrent and transient states are.
However, we can use the transition probabilities to get equivalent definitions:

Theorem 11.6
State ¢ in a homogeneous Markov chain is recurrent if and only if

oo

Z(Pn)ii - 00
n=0
To show this, note that for recurrent i, one has P[V; = oo|Xy = i) = 1. Note also the following

interpretation:
(P™);; =P[X,, =i|Xo = 1]

where P" is the n-step transition probability kernel P(X,, = j|Xo = 7), which can be obtained through direct
application of the one-step kernel n times. Thus,

> (P =Y EBII{X, =i}|Xo =i] =E[>_I{X, = i}| X = i] = E[V;| Xo = i] = 00

If i is a transient state, then f; < 1. We can view the return process as a geometric random variable
because of the Markov nature of the process X;. The first return occurs with probability f;, the second
return with probability fZ, etc. Thus, the expected number of returns is l%f_, which is finite. By the above

argument, for transient states i, > > (P™); < 0o.

We can now use the same definitions we had previously for communicating classes. State ¢ communicates
with state j if (P™);; > 0 for some n > 1 and (P™);; > 0 for some m > 1. A communicating class C' is a
set of states such that, if 4, j € C, then ¢ communicates with j. Furthermore, there are no states k ¢ C such
that a state 7 € C communicates with state k.

Theorem 11.7
Let C' be a communicating class in the homogeneous Markov chain X;. Then, either all states in C are recurrent or all
states in C' are transient.

To see this, take any pair of states i, j € C and suppose that i is a transient state. Since 4, j communicate,

there exists n,m > 0 with (P");; > 0, (P™);; > 0. Then, for any r > 0,

(P™F™ )i = (P")i(P") 15 (P™) i
So,

1

Pr < Pn+m+r B

( )J] — (Pn>ij(Pm)ji< )H
Summing over all r > 0 yields

oo

1 n-—m-+rnr
S e T

r=0

(]
T
=
A\
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The last sum is finite since 7 is transient, so the left hand side is also finite, indicating that j is also transient.

As was the case for finite state Markov chains, every recurrent communicating class will be closed: once
a Markov chain enters a state in a recurrent class, the future states in the chain must belong to the same
recurrent class. Otherwise, there would be a state ¢ in the recurrent class that communicates with a transient
state j (so (P™);; > 0 for some n > 1) but j does not communicate with i. We can thus show that this
contradicts P[V; = oo] = 1, so that ¢ won’t get revisited infinitely.

However, the converse is not true. If we have a closed communicating class, it may not be recurrent!
We do have the following result: if a closed communicating class has a finite number of states, it must
be recurrent. However, there will be examples of closed communicating classes that won’t be recurrent.
Examples 11.12 and 11.13 show closed communicating classes that are not recurrent.

Recurrence is the key property for extending our previous results to infinite Markov chains. The impli-
cations of recurrence are summarized below:

Theorem 11.8
Suppose P has a single communicating class C, which is recurrent. Then, for every state j € C, P[T; < oo] = 1.

We now focus on the steady state behavior. Does a steady state distribution exist? Can there be more
than one? How can one calculate it? We define a couple of useful variables to help understand this behavior.
Remember that T}, is the first return time for state k. Let

Tk
vk = ZI{Xt =4} = number of visits to state ¢ before visiting state k.

n=0

vk = E[V¥| X, = k] expected number of visits to i before revisiting k

n
Vi(n) = ZI{Xt =i} number of visits to state ¢ before time n
k=0

If there were an invariant distribution m;,7 € Rx, then one would like to show

. 1 U
Ell;|Xo=i=—, »=—
T T
and v
lim Z(n) =

n—oco N

almost everywhere.

The main result for existence and uniqueness of steady state distributions for general Markov chains
requires two items: First, one must have recurrent states. Second, one must have the property that, for a
recurrent state, the expected return time is finite. We call a state i positive recurrent if it is recurrent and
m; = E[T;| X0 = 1] < co. When a recurrent state has infinite expected return time, we call it null recurrent.

Theorem 11.9

Let P be the state transition kernel of an irreducible Markov chain. Then, the Markov chain has a positive recurrent state
i if and only if it has an invariant distribution 7. Furthermore, if it has an invariant distribution, then all states are positive
recurrent, and E[T;| X, = i] = 7%1 for all states i.

Note that this does not guarantee that all initial distributions approach the invariant distribution 7. The
problem is that we can still have periodic chains! Here is the final extension that we need:

Theorem 11.10

Let P be the transition probability kernel of an irreducible, aperiodic, positive recurrent Markov chain (also called ergodic),
with invariant distribution 7. Then, for any initial distribution, the marginal probabilities converge: Px,(j) — 7; as
n — oo for all 5. In particular,

Jim (P™)ij = m;
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The difficulty in applying this theorem is that computing whether the Markov chain is positive recurrent
is equivalent to finding the stationary probability distribution. In practice, we simply try to compute the
stationary distribution using the properties of probability balance, and either we can find it, or we find a
contradiction that shows such a stationary probability distribution cannot exist.

Computing the stationary distribution of ergodic Markov chains when the state space is infinite can be
done using the balance equations = = P77, where the vector notation is extended to infinite dimensions.
This will now require solution of an infinite number of linear equations. The use of cuts is helpful in getting
these equations into simple form, as illustrated below.

Example 11.14

Consider a Markov chain defined on the non-negative numbers, which is a model for a single-server queue. The state
value represents the number of elements in a queue. The transition probabilities are Pog = 1 — p;Prrt1) = p,k =
0,1,2,...;Pre—1) =1 —p,k =1,2,3,.... A state transition diagram of this Markov chain is shown in Figure 11.15. It

Figure 11.15: Diagram of the Markov chain for Example 11.14.

is clear that there is a single communicating class in this chain, and that the chain is irreducible, as there are no transient
states. Furthermore, the chain is aperiodic because of the self-transition present in state 0, that makes the period of the
chain equal to 1. Note that, if p =1 — p = 0.5, this is the Markov chain we discussed in Example 11.13.

Assume p < q. Since this chain is linear, we can find cuts between any pair of consecutive states. For a cut between
states k and k + 1, probability balance yields the following equation:

p p k+1
= — k=0,1,...
l_p’ﬂ'k (1_p) o, 07 )

prp = (1 = p)Tpt1 == M1 =

Define the utilization factor o = ﬁ. Then, we have 7441 = o1, Substituting this into the normalization equation
yields
> Ty
Zatm)zl = 7 0 =1 e m=1-aq,
t=0

where we have used the formula for summing a geometric series. Note that this sum exists only for a < 0, which means
P <gq.

Thus, the steady state probability distribution is m; = (1 — a)a®. This means the Markov chain is positive recurrent
when a < 1, and is ergodic.

This chain is aperiodic (state 0 has a self-transition, so it has period 1) and has a single communicating class. It is
also easy to see that the mean revisit time for state 0 is finite, so the states are positive recurrent, and the chain will be
ergodic.

Note that the probability balance equations are the same when p = q. However, in this case, we have
Tk =m0, k=1,2,....
For this case, the normalization property yields

oo
ZTFO =1.
k=0

This equation has no solution, and thus the Markov chain is not positive recurrent and is not ergodic. Similar contradictions
can be found for p > 1 — p.

Assume a < 1. Then, the ergodic distribution is 7, = (1 —a)a®, k= 0,1,.... Can we compute E[X ], the expected
value of the state of the Markov chain in the limit?
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Since X is a discrete random variable with PMF Px__ (k) = (1 — a)a¥, the expectation is

oo

EX] = Zk(l —a)a’ =a(l - a) Zkak_l

k=0 k=1
oo d o0
a(l —a) ;CT a)% (Zak>

a(l _O‘)i(1ia_1> -

(%

11—«

where we have interchanged differentiation and summation because of the convergence of the geometric series when o < 1.
This implies that, as a — 1, the expected value of the state (the length of the queue) blows up and approaches co.

11.4 Ergodicity and the Strong Law of Large Numbers

Markov chains were introduced by Andrey Markov and were named after him. He developed Markov chains
to create correlated sequences of random variables, to study extensions of the strong Law of Large Numbers
and the Central Limit Theorem for such sequences. In his first paper, in 1906, he proved that, for a Markov
chain with positive transition probabilities, the average of the state values along a trajectory converges to
the expected value of the limiting distribution (the fixed vector). This was an extension of the weak Law
of Large Numbers. In later papers, he proved the Central Limit Theorem for such chains. Subsequently, he
established that ergodic Markov chains have properties that generalize the Strong Law of Large Numbers.

Assuming a Markov chain {X;} is ergodic, the marginal distribution Px,(x) converges to a limit distri-
bution m, where m; = P[X, = i]. Then, for any bounded real-valued function f: Rx — R, we have

lim

Jim Zf = 3 fkym = E[f(Xs)]

kER x

almost surely. If we choose the function f(k) =1, f(j) =0 if j # k, we get the following statement:

lim

ZI{X =k} =m.

Hence, 7y is the fraction of time, on average, that the Markov chain spends in state k. If we choose the
function f(k) = k, we get exactly the strong Law of Large Numbers, although we have to show this using a
limiting argument when the number of states is infinite.

What is the key insight behind Markov’s results? The Markov property of Markov chains established
that the evolution of the process starting from a particular state & was independent of the past trajectory
of the process. If state k was positive recurrent, the trajectories of states visited between visits to state
k represented an independent sample of such possible trajectories. Defining as a random variable the sum
of the function f(X;) over the number of states visited starting from state k before the next return to k
(including the state k), every revisit provided independent, identically distributed random samples for f(X}).
There is a subtle argument needed to handle the fact that each of those restarts might take different times
in returning to state k, but again those random times are identically distributed. The results then follow
from the strong Law of Large Numbers.

11.5 Transient Analysis of Markov Chains

Let {X;} be a homogeneous, discrete-time Markov chain with transition probability kernel P, taking values
in a discrete state space Rx. Suppose we have a subset of states A C Rx. Denote the trajectory of the
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Markov chain for a specific outcome as {X:(w)}. The first hitting time of the subset A starting from a state
Xo(s) =i is a random variable defined as:

HMw) =inf{n >0: X,(w) € A|Xo(w) =1}

HiA is a random variable, although we must allow for the possibility that it takes on an infinite value.
Thus, it is a random variable taking values in f U {oc}, a generalization of our earlier definitions. If
H#(w) = oo, it means the process trajectory, for the experiment outcome w, never reaches any of the states

in A. The probability that the process hits A at all when it starts at state Xo(w) = 4 is given by:
hit = P{H{ () < oo}].

In many problems of interest, we want to compute expected hitting times and hitting probabilities given
a particular initial state X(. Such hitting times can indicate successful completion of events and reaching of
milestones. What is surprising is that we will be able to do these computations using simple linear algebra
techniques, as described below.

Example 11.15
Let’s first consider an example. Suppose we have a four state Markov chain, with transition probability matrix P given by:

p_ |2 0 12 o0
“lo 12 0 1/2
o 0 o0 1

Note that this system has three communicating classes: 1, 4 and {2,3}. However, only 1 and 4 are recurrent classes.
Once the state reaches states 1 or 4, the state trajectory stays in those states for all future times.

Suppose we start in state 2. We would like to compute the expected number of steps required to reach states 1 or 4.
We can compute this as follows: Let k; denote the expected time to reach states 1 or 4 starting from from state ¢. Then,
observe the following relationships:

ki=0;ka=0

What about k2 and k3? By the Markov nature of the process, the expected time to reach from state 2 is 1 plus the
expected time to reach from whatever the next state is, weighted by the probability of transitioning to that state. In
mathematical terms, this yields

ko =1+ 0.5k1 + 0.5ks; ks =1+ 0.5ks + 0.5k4

Basically, any trajectory that starts at ¢ and hits the set A = {0,4} has to take the first step to a state that is connected
to i. From that next state, by time invariance, the expected hitting time is the same as that of trajectories that start at
that state.

These last two equations are easily solved once we substitute k1 = 0,k4 = 0 to get ko = k3 = 2.

What about a hitting probability? Let the set A = {4}. Then, reasoning along the same lines, the probability of hitting
A from a particular state k is the weightednsum of the probabilities of hitting A from whatever states k transitions, 2,
weighted by the transition probabilities. In mathematical terms,

hi =1; hi = 0.5h% 4+ 0.5h3; ki = 0.5k + 0.5h%; A =0

Solving these, we get h{* = 0,h4 = 1/3,h% = 2/3,hi = 1.

Can we generalize the insights from this example to arbitrary Markov chains? Let’s first focus on Markov
chains with fininte state space Rx. The result below characterizes the general solution:

Theorem 11.11
Let h* denote the vector of hitting probabilities for a subset A of the finite state space Rx. Then, h** is the smallest
non-negative solution of the following set of linear equations:

ht=1 i€ A
hit =3, Pijhit ig A
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In vector form,
Bt =PhY Rl =1,i€A,

where P is a reduced version of matrix P with the rows corresponding to i € A deleted. By smallest solution we mean
that, if 2 is another non-negative solution, then z; > h{.

Note that we have the same number of equations and unknowns, as there is one equation for each ¢ ¢ A.

Let’s prove the above. First, let’s show that h? satisfies the equations. Assume x(0) =i € A. Then, the
hitting time HiA = 0, and the hitting probability hf‘ = 1, which the theorem guarantees by construction.
Now, assume that x(0) =i ¢ A. Then, H# > 0, as it will take at least one step to reach a state in A. By
the Markov property of the process,

ht =PH{ < oo|Xo =i = P[H < o0, Xy =j|Xo=1i] =) P[H! <oo|X1 =jPij =) hi'P;
J J J

which shows that QA satisfies theorem 11.11.

Now, suppose we have a non-negative solution g to the equations in theorem 11.11. We want to show
that these must be greater than or equal to the expected hitting times. We know that h* = g; for i € A, as
they are set to 1. Suppose i ¢ A. Then,

gi = Z Pijg; = Z Pijg; + Z Pijg; = Z P + Z Pijg;
J JEA J¢A JjeA JgA
Now, substitute for g; in the last term, to get:

9= Pij+Y PO Pi+ > Pirgr) =PX1 € AJ+P[X1 ¢ A, Xy € Al + Y Piy;Pjrge.
jEA je¢A k€A k¢ A JikEA

By repeated substitution, we get
i :P[Xl S A] +]P[X1 ¢ A,XQ S A] +]P>[X1,X2 ¢ A,Xg € A] + ...+

PlX1,...,. Xn1 € A, Xy) € A]+ Z PijiPjije - Pin1jnGin
j17"'7j71¢A

Note that the sum of all but the last term are P[H/ < n]. Thus, g; > P[H;* < n] for any n, because the last
term is non-negative (gi > 0 for all k). Thus,

g; > lim P[H? <n]=P[H? < 0] = h;

n—oo

which shows that h is the smallest nonnegative solution.

Can there be multiple solutions? Consider the Markov chain with transition probability matrix

1 0 0
P=1[0 1/2 1/2
0 1/2 1/2

and let A = {1}. Clearly, h{! = 1, and h4' = h{ = 0, because starting at either state 2 or 3, one cannot reach
state 1 at all. Note, however that the equations in theorem 11.11 can be solved by any vector g = (1, &, k)T,
Of course, the smallest nonnegative solution among this is (1,0,0)7, which are the hitting times.

The above theorem is true even if the state space S is infinite. However, we now have an infinite number
of equations to consider, which makes numerical computation harder.

Example 11.16
Consider a random walk on {0,1,2,...}, where Pogp = 1, and P;(; 1) = Py;_1y = 1/2 fori > 1, Py = 0,]i — j| > 2.
This corresponds to an infinite gambler’s ruin problem where the gambler never leaves until he is broke. We would like to
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compute the hitting probability for the set A = {0}, corresponding to the gambler leaving broke. Here are the relevant
equations for the hitting probability hi:

hy =1
h = 0.5R% + 0.5h4

hit = 0.5h2_1 + 0.5his 1
We can solve this via z-transforms, as follows: the characteristic equation of the recursion is
052> —2+05=0

. By inspection, this has a repeated root at z = 0. Thus, this admits solutions of the form hZ* = C'+ Dn for some constants
C,D. To match the initial condition hy' = 1, we get C = 1. The second equation yields C + D = 0.5 4 0.5(C + 2D),
which is true for all D. Thus, any value of D > 0 will yield a valid nonnegative solution! However, h is a probability, and
as such, it must be less than 1. Indeed, the only solution that will yield a probability is D = 0, so hZ* = 1 for all n! This
means that you will always go broke, no matter where you start!

What if we change the problem so that P;(; 11y = 3/4, Py;—1) = 1/4? This is a very nice game, with odds in the
players’ favor. In this case, the main recursion yields

hit =0.25h5 1 +0.75hi

with characteristic equation 1 — 4z 4 32% = 0, which yields solution of the form hil = C + D(1/3)". To fit the initial
condition h{' =1, we have C + D =1, or D = 1 — C. Thus, the general form of the solution is

B = (- O)5)" +C= ()" +C - (5))

Note that, for any C' > 0, this remains nonnegative.

Thus, we don’t have an easy way to select C. Here is where the choice of smallest non-negative solution gives an

answer: the smallest non-negative solution is given by C' = 0, which is his = (1)™. In this case, the probability of going

3
broke decreases exponentially with increasing initial condition.

Theorem 11.11 deals with hitting probabilities. We can develop a similar result for hitting times.

Theorem 11.12
Let k4 denote the vector of expected hitting times for a subset A of the state space Rx, where these values could be
infinite. Then, k* is the smallest non-negative solution of the following set of linear equations:

kA =0 i€A
k=142, Pk i¢A

In vector form, k4 =1 + I5EA; kA =0,i € A, where P is the state transition matrix P with the rows for i € A removed.

To show this, we proceed as before. We show that k2 satisfies the equations in theorem 11.12. If
Xo=1i¢€ A, then H* =0, 50 k* = 0. If Xg =i ¢ A, then H > 1. By the Markov property, when i ¢ A,

PH? =n|Xo=i]= Y PH!=nX;=j|Xo=i]= Y PH=n|X,=j]P;
JERX JERX
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Thus,
k=Y nP[H? = n] + coP[H = o] = > P[H{ > n]

n=1 n=1

=Y M PH >0, X1 =)= Y PH!>n|X; =P
n=1;€e8 n=1jERx

= > PUZJP’HA>H\ (1) =]
JERX

= > P(I+EH]) =1+ ) Pk}

JERX JERX

which shows that the expected hitting times satisfy the equations of theorem 11.12, even when they have
infinite value!

Let g be any solution of the linear equations in the Theorem. Then, g; = klA = 0 for i € A. Suppose
i ¢ A. then,

9i =1+ Pig;
JgA
=1+ Z Pij (1 + Z ijQk)
igA kg A
=PH! > 1]+ PH! > 2]+ Y PP
j,kgA

Continuing the substitutions, we get

gi =PH} > 1|+ PH? > 2]+ -+ PH >n]+ > Pi,Pj;-P; ;g
jl,...,jn§ZA

Noting that g; > 0, we have

g; > lim (PH? > 1]+ P[H? > 2]+ -+ P[H{ > n]) = E[H{] = k{*

n—oo
which shows that k” is the smallest nonnegative solution.

Example 11.17

Consider the previous example 11.16, where we set P;; 1y = 1/4,P;;_1) = 3/4. Note that, in average, we are headed
towards 0. We want to compute the expected time to reach state 0 from any state n. The relevant equations from theorem
11.12 are:

ko = 0;
k) =1+ 0.75k] + 0.25k3

kS =1+ 0.75k0_; + 0.25k0 4

Note that this set of linear equations has an input which is a constant on the right hand side, corresponding to a pole at
z = 1. Furthermore, the characteristic equation for this system is (z — 1)(z — 3) = 0, so the pole at z = 1 is repeated.
This means the solution is of the form

kn = Kn+ A+ B3".

Substituting into the above equations yields K = 2. The initial condition k) = 0 means A = —B. Note that B > 0 is
required for the solution to stay non-negative. The smallest non-negative solution is B = 0, which yields k0 = 2n.
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Example 11.18

Here is a much more complex example. Consider a Tennis game, where the server's probability of winning a point is p,
and the receiver's probability of winning a point is 1 — p. We assume that each point is an independent event, and that
the probability of winning the point by Player 1 is the same no matter what the score. We can view the evolution of the
score of the game as a Markov chain, which eventually ends in either Player 1, the server, winning the game, or Player 2,
the receiver, winning the game. A state transition diagram using 17 states is show in Figure 11.16(a), where the tennis
score is shown in the circle, and the state number is outside. The red transitions indicate points won by Player 2, and the
black transitions indicate points won by Player 1. We have shortened the states somewhat by matching the 30-30 score
and Deuce into the same state node, requiring two consecutive points to win by any player.

Analysis of this Markov chain shows that there are only two recurrent communicating classes: state 17 where Player 1
wins, and state

Can we compute the expected duration of the game as a function of p, the probability that Player 1 wins a point? At
first, that seems like a daunting task given the size of the network. However, we can solve for this in stages. Conditioned
on starting in the Deuce state, corresponding to state number 12, what is the expected number of games? We can solve
this by analyzing the much smaller chain in Figure 11.16(b). Indeed, the expected exit time equations for the exit states
16,17 are:

10
(a) The full Tennis Markov chain. (b) The chain starting at Deuce.

Figure 11.16: Diagram of the Markov chain for Example 11.18.

kiz =14 pkia+ (1 —p)kis; kia=1+ (1 —p)kio; kis =1+ pkio;
Substituting the last two equations into the first one yields the solution:

kiz =1+ p(1+ (1 —p)kiz) + (1 — p)(1 + pki2)
=2+ 2p(1 — p)ki2

2 _ 1+2(1-p)?

1—2p(1—p) " 1-2p(1—p)

1+2p2

k = = "
e 1—2p(1 - p)

, kis

Let's ask a second question: what is the probability that Player 1 wins, given we have reached Deuce? This is an exit
probability question on the same Markov chain, where we want the probability that the Markov chain will reach state 16.
The relevant equations are:

hi7 = 0; hig = 1; hisa = phis + (1 — p)hi2
hi2 = phia + (1 — p)his; his = phiz + (1 — p)hir

Solving these yields the following:

p2

Pz =pp+ (1 =p)hiz) + (1 =plphiz = Mz = 75 75—
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Now that we have solved for these, note that we can compute the exit times for any of the other states in the full
Markov chain by back substitution! For instance, the following equations propagate the solution two layers back.

kii=1+ (1 7p)k14; kis =1+ pkis
k7 =1+ (1 —p)ki1; ks =1+ pki1 + (1 — p)ki;
ko =1+ pkiz + (1 — p)kis; kio =1+ pkas

It is straightforward to write the remaining equations, until we compute k1 = pka+ (1 —p)ks, yielding the expected number
of games to play.

11.6 Applications

In this section, we discuss two popular applications of the theory of Markov chains.

11.6.1 Google PageRank algorithm

Larry Page and Sergey Brin developed PageRank at Stanford University in 1996 as part of a research project
about a new kind of search engine. Sergey Brin had the idea that information on the web could be ordered
in a hierarchy by “link popularity”: a page ranks higher as there are more links to it. Shortly after, Page
and Brin founded Google Inc., the company behind the Google search engine.

The PageRank algorithm outputs a probability distribution used to represent the likelihood that a person
randomly clicking on links will arrive at any particular page. Google recalculates PageRank scores each time
it crawls the Web and rebuilds its index. The formula uses a model of a random surfer who reaches their
target site after several clicks, then switches to a random page. The PageRank value of a page reflects the
chance that the random surfer will land on that page by clicking on a link.

The PageRank algorithm can best be modeled as a Markov chain in which the states are pages. Let
7 denote the state corresponding to a random surfer being in page k. The probability of transitioning to
another page k is zero, unless there is a link on page j to page k. Then, the probability is uniform among
the number of outgoing links to different pages out of j:

1

Number distinct page links on page j elsewhere.

p {O if there is no link to page k on page j,
jk =

What types of Markov chain does such a construction yield? First of all, it is a large one, with nearly a
billion states. Second, the Markov chain is sparse, so that the number of transitions out of every row is a
very small fraction of the number of nodes: hence, it is ideally viewed in terms of a graph. However, it is
unclear that the resulting chain is irreducible. If a page has no links to other pages, it becomes a sink and
there are no transitions out of it. Hence, there can be many transient states that have transitions that lead
to such sinks. Thus, the resulting Markov chain is not ergodic.

One idea for making it ergodic is to allow the chain to transition to a random page, uniformly over all
pages, when it reaches a page with no links. That would guarantee that the Markov chain would be not
have any absorbing states, and that it would be aperiodic, as self-transitions would be possible, and it would
even guarantee irreducibility. However, this would yield a hard Markov chain to analyze, as it would lose all
the sparsity that was present in the original chain.

What Google’s founders did was simpler and more clever: In addition to having probability of transition-
ing to any of the outgoing links in a page, they added a probability that they would transition from any page
to any other page, uniformly. That is, let N be the total number of pages. Let o € (0,1) be a relaxation
factor. Then, the new transition probability was

l-«a

P =axPij+ ——
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Note that this guarantees that

N N N 1—a
ZPZew:OJZPU—FZT:O&—Fl—C{:L
j=1 j=1

j=1

Since P} € (0,1), then P{’™ is a valid stochastic matrix, and a state transition matrix for the new Markov
chain. Furthermore, since P;"" > 0, this chain is ergodic.

Google PageRank computes the stationary distribution of this Markov chain 7, and ranks pages in order
of decreasing m;. In principle, m; is equal to the fraction of time that a random web surfer would spend on
particular pages. However, solving for the eigenvector of a matrix of size 10° x 10° seems like a daunting
task.

In this regard, the idea of adding the uniform transition probability makes this computation easier.
1

N
Specifically, we can start with p(0) = | : |. Then, we can compute

2| -

p(t+1) = (P™*)"p(t).

In coordinates, this update is

ol 1—a)
mi(t+1) = Zapijﬂ'i(t) TN 7;(t)

Note that this is a very sparse update, so that computing an update iteration is of order O(N), linear in the
number of nodes. However, how many iterations are required? The rate of convergence of the iteration to
steady state depends on the magnitude of the second largest eigenvalue of P™. Fortunately, that magnitude
is no larger than «, so by selecting «, one can control the number of iterations. In practice, « is selected to
be around 0.85, and the number of iterations required to converge is around 60.

11.6.2 Consensus Algorithms

Consider the following situation: a group of persons in a room generate estimates of a quantity X. Each
person generates an estimate X;. Each person shares their estimate with their immediate neighbors; each
person then revised their estimate using a weighted linear combination of their own estimate and the estimate
of their neighbors. Following this, another round of communication and averaging takes place. If we repeat
this for many rounds, will ever person’s estimate converge to the same estimate? Furthermore, if they
converge, what estimate will they converge to?

While this problem seems a bit artificial in its description, the problem is at the heart of many applications:
distributed training of deep neural networks where each agent only has part of the training data, formation
flight of aircraft or birds, distributed control of robots, and similar problems.

Let’s formulate this as a Markov chain problem. Assume there are K persons, and each person is
represented by a node 7. We assume that person i has n; neighbors, denoted by a set IN;. For every node
i and node j € N;, we assume there is an arc from ¢ to j, and an arc from j to i. We assume the graph is
connected, so that there is a path between every pair of nodes.

Let’s define the update algorithm for node . Denote by X;(n) the estimate of person i after the n — th
round of exchanges is complete. X;(0) is the initial estimate. Then,

Xi(n+1) =a;Xi(n) + Sl > Xi(n),

n;

JEN;

where a; € (0,1). Each person ¢ can have their own weight for their own estimate relative to that of their
neighbors.
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Writing this as a vector recursion, this is stated as:
X(n+1) = PX(n)

where P;; € [0,1], Zszl P;; = 1. Hence, P is a stochastic matrix, and thus is the state transition matrix
of a Markov chain. Furthermore, since we assume there is a path in the graph between every pair of nodes
i, 7, the Markov chain is irreducible, and it is aperiodic because there are self-loops, since a; > 0. Thus, the
Markov chain is ergodic, and P has a unique eigenvector corresponding to the eigenvalue 1. Indeed, since
all the rows sum up to 1, we know that the eigenvector corresponding to the eigenvalue 1 is the vector of all

ones.

This means that the estimates will converge:

lim X(n+1)=C
n—roo N

1

for some constant C. Note that the convergence to consensus will happen independent of the numerical
choices used to average the neighbors’ estimates. Convergence is inevitable because of the ergodicity of the
underlying Markov chain.

However, what will be the limit of the estimates that the persons converge to? That depends on the
averaging parameters we choose. Denote the stationary distribution of the ergodic Markov chain with state
transition matrix P as . Then, the consensus algorithm will converge to 7* X (0), the average of the initial
estimates using the stationary probability distribution of the Markov chain.

To establish this, define 1 to be the K-dimensional vector of all ones. Then, since X (n) converges to the
consensus value C'1, we have that

1 1
lim —17X(n) = lim ELTP”X(O) =C

n—oo n—oo

Note also that, since the Markov chain is ergodic and %l is a probability distribution,

1
I lim =17P" = «T.
n—oo

This establishes that the average value C' = =7 X (0).
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Appendix A

Summary of Linear Algebra

Linear algebra is concerned with the solution of sets of simultaneous systems of linear equations. The linear
nature of these sets of equations leads naturally to both a convenient notation and a deep connections with
the properties of vectors and matrices. These notes are intended to provide a summary and review of the
important concepts and notation that arise.

A.1 Vectors

A column vector of dimension n (which we will often simply call a vector) is a vertical array of n numbers,

Z1
T2
= (A1)
Tn
where 1, %, ..., T, are real numbers. We often denote such column vectors in lowercase letters with vector

notation, as shown in (A.1). The set of all n-dimensional vectors of real numbers is usually denoted by R™.

For n-dimensional vectors, we define some elementary operations as follows:

e Transpose: The transpose of a column vector z is a row vector: ¥ = [z1 @3 -+ x,| .. Note that

the transpose of a row vector is a column vector, and vice versa.

e Addition: The sum of two n-dimensional vectors x and y is defined on a component-by-component
basis as B

1+ Y1

T2 + Y2

THy=
Tn + Un

e Subtraction The difference of two n-dimensional vectors x and y is defined on a component-by-
component basis as

1 — Y1

T2 — Y2
L—Y= .

Tn — Yn

e Scalar multiplication The product of a vector z and a real number (a scalar) « is a vector y defined
component wise as:
X1 axy

xro T
y = . =

T az,
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e Inner product or Dot product Given two vectors of the same length, z, y € R", we can define
the dot or inner product between the vectors as gTy = Z?:l z;y;- Two vectors z and y are termed
orthogonal, denoted z L y if QTQ =0.

¢ Euclidean Norm: The Euclidean norm of a vector z is defined as || z |= /2Tz = /Y., 27 . This
is the length of a vector.

e Angle between vectors The inner product provides information about the angle Z(z,y) between
two vectors z and y. Specifically, 7y = ||| ||y|| cos(£(z,y)).

0
0
e Zero vector We define the zero vector in R™ as the vector 0 = | .
0
A.1.1 Linear Independence
A set of vectors {z,...,2,,} in R™ is termed linearly dependent if there exists scalars aq, o, . . ., Quy, 1Ot
all zero, such that
a1Zy + aoZy + -+ amz, =0
If there are no such scalars (except oy = ag = -+ = a,, = 0), then we say the vectors are linearly
independent.
If a set of vectors {z;,...,z,,} are linearly dependent, then one of the vectors z; can be written as a

linear combination of the others.

Note the following facts:

e In R™ we can have at most n linearly independent vectors in any given collection of n-dimensional

vectors.
e Given any set of n linearly independent vectors {z;,...,z,} in ", any other vector can be written
as a linear combination of the vectors zq,...,z,. Any such set of n linearly independent vectors is

termed a basis for R”.

e An orthogonal basis {z;,...,z,} in R" is a basis where every two vectors are mutually orthogonal;
that is, nggj =0if j #k.

e An orthonormal basis is an orthogonal basis where every vector has norm or length 1. That is,
llzi|| =1 for all k € {1,...,n}.

A.2 DMatrices

As in the case of vectors, matrices are simply arrays of real numbers in a regular grid. An m X n matrix is
a rectangular array of numbers with m rows and n columns, defined as

a1;  aiz - Qip
A— a1 az2 - A2p
Am1 Am2 - Amn
where a11,...,amn are real numbers. We refer to ais as the number in the k-th row, ¢-th column. We will

also refer to the number in the k-th row, ¢-th column of a matrix A as [A];;, or (A);;, depending on the
situation.
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The set of all m x n real-valued matrices is denoted R™*™. If m = n, we call the matrix A a square
matrix.

Note that we can view vectors as special types of matrices. A column vector of dimension n can be
viewed as an n X 1 matrix, whereas a row vector of dimension n can be viewed as a 1 X n matrix.

A.2.1 Matrix Operations

e Transpose: The transpose of an m x n matrix A is an n X m matrix deneoted by

a11 a21 Gm1

a a a
AT — 12 22 m2

A1n  A2n Amn

e Symmetric matrices: A square matrix A is said to be symmetric if AT = A.

e Diagonal matrices: A diagonal matrix is a square matrix that only has nonzero entries along its
diagonal, and is of the form

ag 0 0 --- O
0 a 0 --- O
A= . )
0O 0 0 - a,
This is sometimes denoted as diag(ay, ..., an).

e Identity Matrix: The identity matriz in n dimensions is a square n X n matrix, denoted by I,, and
is the diagonal matrix with ones along its diagonal: I,, = diag(1,...,1)..

e Matrix addition Two matrices A, B of the same dimensions m x n can be added, to obtain a new
m X n matrix

ai1 + b1y a2 +biz -+ an+bin
A+B—A+B~— az1 +ba1  ase +bay - agp +boy
Gm1 +bm1 Gm2+bm2 - Amn + b

e Matrix Subtraction Two matrices A, B of the same dimensions m X n can be subtracted, to obtain
a new m X n matrix

a1 — b1 ai2 — bia to a1n — bin

az1 — ba1 a2 — baa ce Aoy, — bo
A-B=A+B= n "
Am1 — bml Am2 — bm2 e Amn — bmn

aaql aay2 Qlin

aa21 aa22 e [6705:7%%

e Scalar Multiplication: For any scalar o, oA =

AQm1 AQm - AQmn

e Matrix Multiplication: Let A be an m X n matrix and B an n X p matrix. Then the matriz product
of A and B is denoted by C = AB where C is an m X p matrix whose elements are given by

C11 Ci2 -+ Cip n
Co1  C22 -+ C2 Z
C= P where Cry = akibw .
=1

Cml Cm2 - Cmp
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Note that A and B must satisfy some dimensional constraints for the above expression to make any
sense. In particular, the number of columns of A must equal the number of rows of B; otherwise, AB
is undefined.

Properties of matrix multiplication:

— For A ¢ R™*" I,,A = A and Al,, = A.
— For A € R™*" B € R, (AB)T = BTAT.
— For square matrices A, B € %" AB may not be equal to BA, so that matrix multiplication may

not be commutative in general.

Matrix-Vector Multiplication: This is an important special case of matrix multiplication where
one of the matrices is a vector. If A € R™*™ and z is an n-dimensional vector, we treat x as an n x 1
matrix, and define the matrix-vector product as

x ST anT
aqq a9 e A1n 1 Z%ZI IR
. T2 =1 @2i L5
az1 a2 az =1
Az = "Il = .
am1 Am2 - Omn Tn Zn 1 Qmil;
3 i= i L

It is sometimes useful to view this as summing the n columns of A with weights given by z;:

a4
n a2;
Ax = Z T;a; where a; =
i=1
Ami

Similarly, for an m-dimensional vector y, we can view y” as a 1 x m dimensional matrix, and define

a1 a2 - Qip
G21 Q22 - Q2p

T m m m

y A= [yl Y2 o ym] . . . . = [Zi:1 Vit Doisq YiGi2 o Dy Z/z‘am]
aml Am2 Amn

It is sometimes useful to view this as summing the m rows of A with weights given by y;:

m
yTA = Z yib? where Q? = lan a2 -+ )
i=1

Outer product of vectors: Let z € R™ and y € R™. Consider z as an n x 1 matrix, and QT asalxn
matrix. Then the dyadic or outer product of the vectors x and y is the n x m matrix that results from
the matrix product of x and yT, denoted as

riyrs T1yz2 - T1iYm

T T2Y1r X2Y2 - X2Ym
Yy = . . .

TnYlr TplY2 - TplYm

Orthogonal matrices: A square n x n matrix A is orthogonal if ATA = AAT = 1,,. If we think of A

as consisting of a set of columns, i.e. A = [Ql a, - Qn], then in general
ofe, afz, - 2tz
. otw, alz, - 2la,
A A=
etz zlz, - 2Tz,

Consequently, we see that A is orthogonal if and only if its columns are orthogonal and normalized,
e xy L, k#j,and ||z = I.
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e Rank: The rank of an m x n matrix A is equal to the largest number of linearly independent columns

in A and is written as rank(A). It is also equal to the largest number of linearly independent rows in
A.

— Rank is preserved under transpose rank(A”) = rank(A).
— rank(A) < min(m,n).

— If rank(A) = min(m, n), then we say the matrix has full rank.

e Trace: The trace of a square matrix A € R"*" is the sum of its diagonal elements: tr(A4) =Y | a;
For any square matrix A that tr(A) = tr(AT).

For two square matrices A, B with the same dimensions, tr(A 4+ B) = tr(A) + tr(B). For two matrices
A, B with dimensions so that AB and BA are defined, tr(AB) = tr(BA). In particular, note that

|z = 2Tz = tr (2Tz) = tr (z27)

A.2.2 Matrix Inverses and Determinants

A square n x n matrix A is invertible or nonsingular if the only solution of the equation Az = 0 is z = 0.
That is, the only vector producing zero output is the zero vector. Otherwise, it is called non-invertible or
singular. If A is invertible, then there exists another n x n matrix A~' called the inverse of A, so that
AAT'=ATTA=1,.

The property of invertibility is related to the solution of sets of equations. To see this, consider the set
of equations Az = y where A is n x n. This equation has a unique solution x for any y if and only if A

is invertible (in which case the solution is Afly). Conversely, if A is singular, then there exists a non-zero
vector 2’ such that Az’ = 0. In this case, we can add any multiple of z to a solution of the linear equation
and produce another solution. Thus if A is singular, the system of equations will not have a unique solution.

The determinant det(A) of a square n x n matrix A can be defined in two equivalent ways:

1. Recursive: For any scalar a, define det(a) = a. If A is n X n , then we can compute det(A)| by
“expanding by minors” using any row or column, as follows: Let My, denote the matrix obtained by
deleting the kth row and fth column from A; this is called the “minor” of A at (k,¢). Note that this
isan n — 1 x n — 1 matrix. Then, for any 1 </ <n

n

det(A) = "(~1)"ar, det(Mgy)
k=1

. Equivalently, for any 1 < k < n,
det(A) = > (=1)*a, det(My) .
(=1
For example, if n = 2, then det(A) = aj1a20 — a12a921.

2. Alternating Sum: Let S denote the set of all n! possible permutations of the set {1,2,...,n}. The
sign of a permutation o € S, denoted by sign(c), is equal to +1 if the minimum number of pairwise
interchanges needed to arrive at o from {1,2,...,n} is even and equal to —1 if it is odd. Then,

det(A) = Z sign(o) H Ao (k) -
k=1

ceS

For most small matrices, the recursive way is an efficient way of computing the determinant. Consider
the following example:
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Example A.1
Define the matrix A as:

G = =N
=)
== O O
© O O W

Then,

det ( E (i) §: ) = 1(=1)"""det (B g}) +0(—1)"2det (E g}) +0(=1)"*det (E ﬂ)
=9
det ( -1 1 (1)_ ) =1(—1)"""det (E ﬂ) 4 1(—1) "2 det (E ﬂ)
5 1 1]

Some basic properties of determinants are:

e For square n x n matrices A, B, det(AB) = det(BA) = det(A)det(B).
e For a scalar «, det(aA) = a™det(A).
o det(A) = det(A”).

o If A is invertible, det(A™") = 5.

The invertibility of a square matrix n X n matrix A is equivalent to each of the following statements:

1. A is invertible.

2. det(A) # 0.

3. rank(A) = n.

4. All of the columns of A are linearly independent.

5. All of the rows of A are linearly independent.

6. The equation Az = y has a unique solution x for each choice of y.

The determinant is a useful tool for computing the inverse of an invertible matrix A. The inverse of A
can be expressed as

11y
- det(A)C
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where the matrix C is computed using the determinants of the minors of A. Recall that the minor My, is
the matrix obtained by deleting the kth row and ¢th column from A. The k/-th element of C is obtained as
[Clre = (—1)*+*det(Myy). The matrix C is known as the matrix of cofactors.

ailp a2

a a :| The minors are M11 = a22, M12 = a21, M21 = a2, M22 = 1111. Since
21 22

For example, let A = [

aso —am}

they are scalars, their determinant is equal to their value, so the matrix of cofactors is C = { u a
—a12 11

As computed before, we know det(A) = aj1a22 — ajza21. Then,

Afl _ 1 CT _ 1 [ a22 1112]

11022 — A12021 a11G22 — Q12021 | —Aa21 ai1

We can verify that this matrix is indeed the inverse of A by computing the matrix product.

Some useful properties of inverses are

~1
T _\T

o« (A7) =(a )",

o If A B are invertible square n X n matrices, (AB)f1 =B1tA L

e If A is diagonal, such that A = diag (p1, ..., itn), then A~ = diag (i, e ,i).

Hn

e The matrix A is orthogonal if and only if A=! = AT

A.2.3 Eigenvalues and Eigenvectors

Let A be an n x n real matrix. A scalar \ is called an eigenvalue of A with associated nonzero eigenvector
x if

Az = Az

The above equation can be rewritten as (Al, — A)z = 0. Thus A is an eigenvalue of A if and only if the above
equation has a solution z # 0. This will be the case if and only if Al,, — A is singular.

Recall that a square matrix is singular if and only if its determinant is zero. Define the characteristic
polynomial of A as the following polynomial in the variable s:

DA(s) = det()\ln — A) =

This will be an n — th degree polynomial, as diagonal elements of the matrix Al,, — A consist of terms s — a;;.
The eigenvalues of the matrix A must then be solution of the characteristic equation pa(s) = 0.

The characteristic polynomial can always be factored in terms its roots, as pa(s) = (s—A1)(s—A2) -+ (s—
An), where the roots may be complex numbers, and they may be repeated. In terms of unique roots, we can
factor it as

pa(s) = (s = A1)" (s = A2)"™ - (s — A)™
where the scalars A1, Ao, ..., A\r are the k unique eigenvalues of A where 1 < k < n and n; is the algebraic
multiplicity of eigenvalue \;. The algebraic multiplicities sum up to the dimension, Zle n; =n.

Note that the eigenvalues may be complex numbers; however, if a complex ); is an eigenvalue, then its
complex conjugate A} is also an eigenvalue, because the coefficients of the polynomial pa(s) are real numbers.

For each eigenvalue \;, there can be m; linearly independent vectors that satisfy ()\iln — A) x=0. We
refer to m; as the geometric multiplicity of eigenvalue \; and note that it is bounded by the algebraic
multiplicity, 1 < m; < n;. Note that, if the eigenvalue \; is complex, its associated eigenvectors will be
complex also.
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If \; is an eigenvalue of A, then we can determine an associated eigenvector by solving the set of linear
equations Az = \;z. Note that if z is an eigenvector, so is az for any scalar «. Consequently, we can always
adjust the length of the eigenvectors arbitrarily. Note that each distinct A; has a linearly independent x,
corresponding to it. If A; has multiplicity k > 1, i.e. if A; is a k-th order root of pa(A), then there may be
anywhere from 1 to k linearly independent eigenvectors associated with A;.

For the special case where A is symmetric, we can show that all the eigenvalues \; are real-valued, as
will the eigenvectors. Let u®*! denote the complex conjugate of u. Suppose that A is a (possibly complex)
eigenvalue of the real symmetric matrix A. Thus there is a nonzero vector v, also with complex entries, such
that Av = Av. Let u%%* denote the complex conjugate of u. By taking the complex conjugate of both sides,
and noting that A* = A since A has real entries, we get

Av = v = Av® = \*v*.
Then,
()T AuA* (0)Tw = X*[u][?
= ()" xe = AlJu|]?
which implies \* = A, and thus A is real. Similarly, if v is an eigenvector for real eigenvalue A, then
Av = v = A"v" = Av™ = V0" = W

which implies that v* is also an eigenvector for eigenvalue A. If the multiplicity of A is 1, this implies that
v = v* and hence it is real. If the multiplicity is greater than 1, one can show with a lengthier argument
that we can pick real eigenvectors corresponding to the eigenvalue A.

Another property of real symmetric matrices is that there exist a set of real eigenvectors that are or-
thogonal. This is easy to show for two eigenvectors v, v, corresponding to distinct eigenvalues A1, A2,
because

vf Avy = (Avy) vy = Ao] v,
= v} (Avy) = Aovj v,

which shows that vT v, = 0, because A\; # )\a. Again, a more sophisticated analysis extends this result to the
fact that we can pick orthogonal eigenvectors for eigenvalues that are repeated. Since multiples of eigenvalues
are also eigenvalues, this means we can pick an orthonormal set of eigenvectors for any real symmetric A.

For a real, symmetric matrix A, let )\; denote its eigenvalues and v; denote a set of corresponding
orthonormal eigenvectors. We can represent the matrix A by its spectral eigendecompositon as:

n
A= Z )\iyiy? .
i=1
This is also expressed in terms of a matrix decomposition as
A =VAV”
where the matrix V is an orthogonal n x n matrix with columns corresponding to the eigenvectors v,, and

A = diag(M1, ..., \n).

Some additional facts about eigenvalues of matrices A. Using the definition of the characteristic polyno-
mial, we see the following: pa(s) = (s —A1)(s — A2) -+ (s — A,), where A;,i = 1,...,n are the eigenvalues of
A, possibly repeated. By definition, pa(s) = det(sl,, — A), so pa(0) = det(—A) = (—1)"det(A). Thus,

pa(0) = (=1)"det(A) = (—=1)" H)\i

which shows that the determinant of A is the product of its eigenvalues. With a little more work, we can
show that the trace of A is the negative of the coefficient of s"~1 in pa(s), and is given by:
tr(A) =AM+ X+ + X\,

which is the sum of the eigenvalues!
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A.3 Similarity Transformations and Change of Bases

A matrix A with dimensions m X n specifies a linear transformation from vectors in R™ to vectors in R™.
The specific elements of the matrix correspond to how the basis vectors in 8" are mapped into combinations
of the basis vectors in R™. Specifically, column i of A represents the coefficients in the basis for R" that
represent the vector that is the image of the i — th basis vector in R™. If we change the choice of basis in
R™ or R™, we will obtain different values for the coefficient of the matrix A.

Let’s consider only matrices A that are n x n. Let C be an invertible matrix of the same size. We can
then define a similarity transformation of A as B = CAC™!. We say that “B is similar to A”. A similarity
transformation corresponds essentially to a change of coordinates. Specifically, suppose

y=A~Az

and consider a change of coordinates
u=Cr, wv=0Cy

(so that each component of u, for example, is a weighted sum of components of z and vice versa, since
x = C_lg). Then v = Bu.

Note that the determinant is not changed by similarity transformations, because
det(B) = det(CAC™ ') = det(C)det(A)det(C™*) = det(A)
Furthermore, the characteristic polynomial does not change:

pe(s) = det(sl,, — B) = det(sl, — CAC™ 1)
= det(sClI,C~" — CAC™)
= det(C(sl,, — A)C ') = det(sl, — A)

Thus, the eigenvalues of B and A are the same.

Suppose that the n x n matrix A has a full set of linearly independent eigenvectors z,...,z,, so that

Az, = \iz;, i =1,...,n. The existence of such a complete set of eigenvectors is guaranteed, for example, if
the \; are all distinct or if A is symmetric.

We can rewrite these as one equation

A 000 0
0 X 0 --- 0
Alzy, z, o oz, =z 2y o oz, (A.2)
0 0 0 An
Let C™! = [elelclex; x5 -+ z,] which is invertible, since the columns z,,...,z, are linearly indepen-

dent. Then (A.2)implies that CAC™" = diag(A1, A2, - .., An). Note that if A is symmetric we can choose the
x; to be orthonormal so that C™* = C”.

A.4 Positive-semidefinite and Positive-definite Matrices

A symmetric square matrix A is positive semidefinite, written A > 0, if and only if ullz”Az > 0 for all
vectors z. This matrix A is positive definite, written A > 0, if z7Az > 0 for all z. It is not difficult to see
that a positive semidefinite matrix is positive definite if and only if it is invertible.

Some basic facts about positive semidefinite matrices are the following:
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e If A>0and B >0, then A+ B >0, since 2z (A+ B)z = 27Az + 2" Bz

If either A or B in (i) is positive definite, then so is A + B.

If A >0, then A~! > 0 since

2TA e = (A )T A(A 1 2) > 0

If A > 0 then C'AC > 0 for any (not necessarily square) matrix C for which CTAC is defined.

If A > 0 and C is invertible, CTAC > 0.

e A > (if and only if all of its eigenvalues are real and non-negative. This is because, for any eigenvector
x with eigenvalue A, we have
2T Az = ATz = \|[z® > 0.

e A > 0 if and only if all of its eigenvalues are strictly positive.

One test for positive definiteness is Sylvester’s Test. Let

ai; a2 - ain

12 Q22 -+ G2p
A =

Ainp  A2n T Anpn

Then A is positive semidefinite (positive definite) if and only if

det (all) Z 0

a a
det 11 12

a12 a2
a1 ai2 a3

det | |a12 a2 aos >0
a13 G23 G33

Y

0

‘etc.

Let A > 0, and let C be the orthogonal matrix of eigenvectors so that c’ac = diag(A1, A2, ..., Ay). The,
we can construct a simple square root of the matrix A so that A = (Al/Q)TAlﬂ. Specifically, we take

A1/2 = dlag (@7 \/ga tey \/ﬂ) CT-

Note that the square root is invertible if and only if A > 0 so all the eigenvalues are positive. Also, note that
the above square root is far from unique: We can multiply it by an orthogonal matrix B and get another
square root.

A.5 Subspaces

A subset S C R™ is a subspace if S is closed under vector addition and scalar multiplication. That is, if
z € 5, and « is a scalar, then az € S. Furthermore, if z,y € S,thenz +y € S.

51:{{g]|ae§n}

Examples of subspaces of R? are!

1Here R denotes the set of real numbers.
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52—{[2”;} |a€§R}

The dimension of a subspace equals the maximum number of vectors in .S that can form a linearly independent
set.

Let K be any subset of 1. The orthogonal complement of K is defined as follows:
KL:{§€§RR|£J_QVQEK}
K+ is a subspace whether or not K is, since if 21, z, € K+, y € K, we have (2, +2,)"y = 0 and (az;)"y = 0.

Let d be a single nonzero vector in R" and consider {d}+. This is a subspace of dimension n — 1. If
n — 2, then the set of all vectors & such that d’z = 0 is a line through the origin perpendicular to d. In
3-dimensions this set is a plane through the origin, again perpendicular to d. Note that the subspace {d}*
splits R into two half-spaces, one corresponding to those z for which d”z > 0, the other to those z for
which d”z < 0.
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Appendix B

Examples of Subsets that are not Events

We are going to construct subsets of an uncountable sample space 2 that cannot be considered events,
because which we will not be able to define a probability measure that is consistent with the axioms of
probability. Consider the sample space 2 = [0,1]: For a number s € [0, 1], define the set A, = {z € [0,1] :
|x — slis a rational number. } Since the rational numbers are countable, the set A; C Q has a countable
number of elements. Since s is a real number in [0, 1], there are an uncountable number of possible sets As.
Furthermore, we can find an uncountable collection of s € [0, 1], denoted by C, such that, if s, € C, then
AsN Ay =0, and UgecAs = [0,1]. In this manner, we have constructed an uncountable partition of the unit
interval [0, 1], where each set in the partition has a countable number of elements, and any two sets in the
partition are disjoint.

Define the set B by selecting one element from each Ay, s € C'. Since there are an uncountable number
of s € C, the set A; has an uncountable number of elements. For any rational number r; € [0, 1], define
the translation of B by r; as B; = {y : y = (z + r;) mod 1 for some x € B}. In this definition, we use the
modular operation  mod 1 =z — |z].

Note the following:

e There are a countable number of B;, because there are a countable number of rational numbers in
[0,1].

e FEach B; has an uncountable number of elements, which are translations of the elements of B.

e B,NB; =0 ifi# j, because B contains one and only one element from each A, € C. Note that, if
the conclusion were not true, then there is are x,y € B,z # y such that « 4+ r; = y + r;, which would
imply that x,y € A, for some s, contradicting the construction of B.

o UX B, = UsAs = [0,1] = Q. This last property follows because the sets A, consist of the rational
translations of s, so that every element of A, is in some B;.

Thus, the sets B; form a countable partition of the interval [0,1].

Denote the probability measure P such that the probability of an interval (a,b) is its length: P[(a,b)] =
b—afor 0 <a <b<1. If we were to make B an event, what would be P[B]? By construction, since each B;
is a simple translation of B, then P[B] = P[B,] for all i. If we were to assign P[B] = 0, then the countable
additivity property would require

PUz,B)] = P[] = ) P[Bi] =0,
which would violate the normality property that requires P[Q2] = 1. If we assign P[B] = a > 0, then
PlUZ,Bi] = P[] = ) P[Bj] = oc,
=1

violating the normalization property of probability measures. Thus, we have a subset of @ = [0, 1] for which
we cannot assign a probability which is compatible with the axioms of probability theory and the definition
of the uniform probability measure. Therefore, B cannot be an event in this probability space, although
B c[0,1].
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Appendix C
Standard Normal Cumulative Distribution Func-
tion

This appendix contains the table of the standard Normal CDF ®(x) described in 3, subsection 3.4.3. To
compute the complementary CDF, recall that Q(z) =1 — ®(z). Also, Q(z) = (—x).
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STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

V4 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
-3.9 | .00005 .00005 .00004 .00004 .00004 .00004 .00004 .00004 .00003 .00003
-3.8 | .00007 .00007 .00007 .00006 .00006 .00006 .00006 .00005 .00005 .00005
-3.7 | .00011 .00010 .00010 .00010 .00009 .00009 .00008 .00008 .00008 .00008
-3.6 | .00016 .00015 .00015 .00014 .00014 .00013 .00013 .00012 .00012 .00011
-3.5 | .00023 .00022 .00022 .00021 .00020 .00019 .00019 .00018 .00017 .00017
-3.4 | .00034 .00032 .00031 .00030 .00029 .00028 .00027 .00026 .00025 .00024
-3.3 | .00048 .00047 .00045 .00043 .00042 .00040 .00039 .00038 .00036 .00035
-3.2 | .00069 .00066 .00064 .00062 .00060 .00058 .00056 .00054 .00052 .00050
-3.1 | .00097 .00094 .00090 .00087 .00084 .00082 .00079 .00076 .00074 .00071
-3.0 [ .00135 .00131 .00126 .00122 .00118 .00114 .00111 .00107 .00104 .00100
-2.9 | .00187 .00181 .00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139
-2.8 | .00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193
-2.7 | .00347 .00336 .00326 .00317 .00307 .00298 .00289 .00280 .00272 .00264
-2.6 | .00466 .00453 .00440 .00427 .00415 .00402 .00391 .00379 .00368 .00357
-2.5 | .00621 .00604 .00587 .00570 .00554 .00539 .00523 .00508 .00494 .00480
-2.4 | .00820 .00798 .00776 .00755 .00734 .00714 .00695 .00676 .00657 .00639
-2.3 | .01072 .01044 .01017 .00990 .00964 .00939 .00914 .00889 .00866 .00842
-2.2 | .01390 .01355 .01321 01287 .01255 .01222 01191 .01160 .01130 .01101
-2.1 .01786 .01743 .01700 .01659 .01618 01578 .01539 .01500 .01463 .01426
-2.0 | .02275 .02222 .02169 .02118 .02068 .02018 .01970 .01923 .01876 .01831
-1.9 | .02872 .02807 .02743 02680 .02619 .02559 .02500 .02442 .02385 02330
-1.8 | .03593 .03515 .03438 .03362 .03288 .03216 .03144 .03074 .03005 .02938
-1.7 | .04457 .04363 .04272 .04182 .04093 .04006 .03920 .03836 .03754 .03673
-1.6 | .05480 .05370 .05262 05155 .05050 .04947 .04846 .04746 .04648 .04551
-1.5 | .06681 .06552 .06426 .06301 .06178 .06057 .05938 .05821 .05705 .05592
-1.4 | .08076 .07927 .07780 .07636 .07493 .07353 07215 .07078 .06944 .06811
-1.3 | .09680 .09510 .09342 .09176 .09012 .08851 .08691 .08534 .08379 .08226
-1.2 | .11507 11314 11123 10935 .10749 10565 10383 .10204 .10027 .09853
-1.1 | .13567 13350 13136 12924 12714 12507 12302 12100 .11900 11702
-1.0 | .15866 .15625 .15386 15151 .14917 .14686 .14457 .14231 .14007 .13786
-0.9 | .18406 18141 17879 17619 17361 17106 16853 16602 .16354 .16109
-0.8 | 21186 .20897 20611 20327 .20045 19766 19489 19215 .18943 18673
-0.7 | .24196 .23885 23576 .23270 .22965 22663 22363 .22065 21770 21476
-0.6 | .27425 .27093 26763 26435 26109 25785 25463 25143 24825 .24510
-0.5 | .30854 .30503 .30153 .29806 .29460 29116 28774 .28434 .28096 .27760
-0.4 | .34458 .34090 33724 .33360 .32997 .32636 32276 31918 31561 31207
-0.3 | .38209 37828 37448 .37070 .36693 36317 35942 35569 35197 .34827
-0.2 | 42074 41683 41294 40905 40517 40129 .39743 39358 .38974 38591
-0.1 | .46017 45620 45224 44828 44433 44038 43644 43251 42858 42465
-0.0 | .50000 49601 49202 48803 48405 48006 47608 47210 46812 46414

Figure C.1: Part 1 of Standard Normal Cumulative Distribution Function: Negative .
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STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 [ .50000 .50399 .50798 51197 .51595 .51994 52392 .52790 53188 .53586
0.1 | .53983 .54380 54776 55172 .55567 .55962 .56356 .56749 57142 57535
0.2 | .57926 58317 .58706 .59095 .59483 59871 60257 .60642 .61026 .61409
03 | .61791 62172 .62552 .62930 .63307 .63683 64058 .64431 .64803 .65173
04 | .65542 .65910 .66276 .66640 .67003 .67364 .67724 .68082 .68439 .68793
0.5 [ .69146 69497 .69847 70194 70540 70884 71226 71566 71904 72240
0.6 | .72575 72907 73237 73565 73891 74215 74537 74857 15175 75490
0.7 | .75804 76115 76424 76730 77035 17337 77637 77935 78230 78524
08 | .78814 79103 79389 79673 79955 .80234 80511 .80785 .81057 81327
09 [ .81594 .81859 .82121 .82381 .82639 .82894 .83147 .83398 .83646 .83891
1.0 [ 84134 .84375 .84614 .84849 .85083 85314 .85543 .85769 .85993 .86214
1.1 | .86433 .86650 .86864 .87076 .87286 .87493 87698 .87900 .88100 .88298
1.2 | .88493 .88686 88877 .89065 .89251 .89435 .89617 .89796 .89973 90147
1.3 [ .90320 .90490 90658 .90824 90988 91149 91309 .91466 91621 91774
1.4 | 91924 .92073 92220 .92364 92507 92647 92785 .92922 .93056 93189
1.5 | 93319 93448 93574 .93699 93822 93943 94062 94179 .94295 .94408
1.6 [ .94520 .94630 94738 .94845 94950 95053 95154 .95254 95352 .95449
1.7 | .95543 95637 95728 95818 95907 95994 96080 96164 .96246 96327
1.8 [ .96407 96485 .96562 .96638 96712 96784 96856 .96926 .96995 .97062
1.9 [ 97128 97193 97257 .97320 97381 97441 .97500 97558 97615 .97670
2.0 | 97725 97778 97831 97882 97932 97982 98030 .98077 98124 98169
2.1 | 98214 98257 98300 98341 98382 98422 98461 .98500 98537 98574
2.2 | 98610 98645 98679 98713 98745 98778 98809 .98840 .98870 .98899
2.3 | .98928 98956 98983 .99010 99036 99061 99086 99111 99134 99158
2.4 [ 99180 99202 99224 .99245 99266 99286 99305 .99324 .99343 99361
2.5 | 99379 99396 .99413 .99430 .99446 99461 99477 .99492 .99506 .99520
2.6 | 99534 99547 99560 .99573 .99585 99598 99609 .99621 .99632 .99643
2.7 | .99653 99664 99674 .99683 99693 99702 99711 99720 99728 99736
2.8 | 99744 99752 99760 99767 99774 99781 99788 .99795 .99801 99807
2.9 | 99813 99819 99825 .99831 .99836 .99841 .99846 .99851 .99856 .99861
3.0 | .99865 99869 99874 .99878 99882 .99886 99889 .99893 .99896 99900
3.1 | .99903 99906 99910 99913 99916 99918 99921 .99924 99926 99929
3.2 | 99931 99934 99936 .99938 .99940 99942 99944 .99946 .99948 .99950
3.3 | 99952 99953 99955 .99957 99958 99960 99961 .99962 .99964 .99965
3.4 | 99966 99968 .99969 .99970 99971 99972 99973 .99974 .99975 .99976
3.5 [ 99977 99978 99978 .99979 99980 99981 99981 .99982 .99983 99983
3.6 | .99984 99985 99985 .99986 .99986 99987 99987 .99988 .99988 .99989
3.7 | 99989 99990 99990 .99990 99991 99991 99992 .99992 .99992 99992
3.8 | .99993 .99993 .99993 .99994 99994 99994 99994 .99995 .99995 .99995
3.9 | .99995 .99995 99996 .99996 .99996 .99996 99996 .99996 .99997 .99997

Figure C.2: Part 2 of Standard Normal Cumulative Distribution Function: positive x.
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